(N

Using uM-FPU V3 with the
b= PICAXE Microcontroller

Micromega Corporation

Introduction

The uM-FPU V3 chip is a 32-bit floating point coprocessor that easily connects to the PICAXE family of
microcontrollers using an I>C interface. It provides extensive support for 32-bit IEEE 754 floating point operations
and 32-bit long integer operations.

This document describes how to use the uM-FPU V3 chip with the PICAXE Microcontroller. For a full description
of the uM-FPU V3 chip, please refer to the uM-FPU V3 Datasheet and uM-FPU V3 Instruction Reference.

Application notes are also available on the Micromega website.

uM-FPU V3 Pin Diagram and Pin Description

DIP-18, SOIC-18

. /
MCLR [ 1 18 [ ] AVDD
ANO [] 2 17 [] AVSS
ANT [] 3 16 [] SCLK
CS 4 15 ouTo
EXTIN E s UM-FPU % VDD
osci [s V3  13[7Jvss
oscz2 []7 12 [ ] SIN/SDA
TSTOUT [ 8 11 [] souT/scL
TSTIN []9 10 ] OUT1
Pin Name Type Description
1 /MCLR Input Master Clear (Reset)
2 ANO Input Analog Input 0
3 AN1 Input Analog Input 1
4 CS Input Chip Select, Interface Select
5 EXTIN Input External Input
6 0OSC1 Input Oscillator Crystal (optional)
7 0SC2 Output Oscillator Crystal (optional)
8 TSTOUT Output Test Output, Debug Monitor - Tx
9 TSTIN Input Test Input, Debug Monitor - Rx
10 OouT1 Output Test Point 1
11 SOUT Output SPI Output, Busy/Ready Status
SCL Input I2C Clock

Micromega Corporation 1 Revised 2006-10-27



12 SIN Input SPI Input
SDA In/Out 1°C Data
13 VSS Power Digital Ground
14 VDD Power Digital Supply Voltage
15 OuUTO Output Test Point 0
16 SCLK Input SPI Clock
17 AVSS Power Analog Ground
18 AVDD Power Analog Supply Voltage

Connecting uM-FPU V3 to the PICAXE using I’C

The default slave address for the uM-FPU V3 chip is 0xC8 (LSB is the R/W bit, e.g. 0xC8 for write, 0xC9 for read).
See the uM-FPU datasheet for further description of the I°C interface. See the PICAXE documentation to determine
the location of the I>C pins for each different microcontroller.

PICAXE-18X  I2C SDA
12C SCL

PICAXE Pins

Output 4 SCL
Qutput 1 SDA

Note: SCL and SDA
must have pull-up
resistors as required
by the 12C bus.

Micromega Corporation

Output 1
Output 4
VDD VDD
uM-FPU V3
! /MCLR AVDD 18
2 17
_3 ANO AVSS 6
_4 AN1 SCLK F
5 CS ouTo T
_6 EXTIN VDD 3
_7 0OSC1 VSS 2
_8 0OsC2 SIN/SDA "
_9 TSTOUT SOUT/SCL o
—r TSTIN ouT1 |—

Using the uM-FPU V3 with the PICAXE



Brief Overview of the uM-FPU V3 chip

For a full description of the uM-FPU V3 chip, please refer to the uM-FPU V3 Datasheet, uM-FPU V3 Instruction
Reference. Application notes are also available on the Micromega website.

The uM-FPU V3 chip is a separate coprocessor with its own set of registers and instructions designed to provide
microcontrollers with 32-bit floating point and long integer capabilities. The PICAXE communicates with the uM-
FPU using a SPI or I?C interface. Instructions and data are sent to the uM-FPU, and the uM-FPU performs the
calculations. The PICAXE is free to do other tasks while the uM-FPU performs calculations. Results can be read
back to the PICAXE or stored on the uM-FPU for later use. The uM-FPU V3 chip has 128 registers, numbered 0
through 127, that can hold 32-bit floating point or long integer values. Register O is often used as a temporary
register and is modified by some of the uM-FPU V3 instructions. Registers 1 through 127 are available for general
use.

The SELECTA instruction is used to select any one of the 128 registers as register A. Register A can be regarded as
an accumulator or working register. Arithmetic instructions use the value in register A as an operand and store the
result of the operation in register A. If an instruction requires more than one operand, the additional operand is
specified by the instruction. The following example selects register 2 as register A and adds register 5 to it:

SELECTA, 2 select register 2 as register A
FSET, 5 register[A] = register[A] + register[5]

Sending Instructions to the uM-FPU

Appendix A contains a table that gives a summary of each uM-FPU V3 instruction, with enough information to
follow the examples in this document. For a detailed description of each instruction, refer to the uM-FPU V3
Instruction Reference.

To send instructions to the uM-FPU using the I2C interface, the writei2c command is used as follows:
writei2c 0, (FADD, 5)

The part inside the parentheses specifies the instructions and data to send to the uM-FPU. The zero before the
parentheses is the address of the uM-FPU data buffer. The writei2c command sends 8-bit data. To send a word
variable, the high byte is sent first, followed by the low byte.

All instructions have an opcode that tells the uM-FPU which operation to perform, The following example
calculates the square root of register A:

writei2c 0, (SQRT)

Some instructions require additional operands or data and are specified by the bytes following the opcode. The
following example adds register 5 to register A.

writei2c 0, (FADD, 5)

Some instructions return data. The readi2c command is used to read 8-bit data. This example reads the lower 8
bits of register A:

writei2c 0, (LREADBYTE)
readi2c 0, (dataByte)

Micromega Corporation 3 Using the uM-FPU V3 with the PICAXE



The following example adds the value in register 5 to the value in register 2.

writei2c 0, (SELECTA, 2, FADD, 5)

It’s a good idea to use constant definitions to provide meaningful names for the registers. This makes your program
code easier to read and understand. The same example using constant definitions would be:

symbol Total =
symbol Count =

total amount (uM-FPU register)
current count (uM-FPU register)

U N

writei2c 0, (SELECTA, Total, FADD, Count)

Micromega Corporation 4 Using the uM-FPU V3 with the PICAXE



Tutorial Examples

Now that we’ve introduced some of the basic concepts of sending instructions to the uM-FPU, let’s go through a
tutorial example to get a better understanding of how it all ties together. This example takes a temperature reading
from a DS1620 digital thermometer and converts it to Celsius and Fahrenheit.

Most of the data read from devices connected to the PICAXE will return some type of integer value. In this
example, the interface routine for the DS1620 reads a 9-bit value and stores it in a word variable on the PICAXE
called rawTemp. The value returned by the DS1620 is the temperature in units of 1/2 degrees Celsius. The
following instructions load the rawTemp value to the uM-FPU, converts it to floating point, then divides it by 2 to
get degrees in Celsius. (The high byte of rawTemp is defined as rawHigh and the low byte is rawLow.)

writei2c 0, (SELECTA, DegC, LOADWORD, rawHigh, rawLow, FSETO0, FDIVI, 2)

Description:

SELECTA, DegC select DegC as register A

LOADWORD, rawHigh, rawLow load rawTemp to register 0 and convert to floating point
FSETO DegC = register[0] (i.e. the floating point value of rawTemp)
FDIVI, 2 divide by the floating point value 2.0

To get the degrees in Fahrenheit we use the formula F = C * 1.8 + 32. Since 1.8 is a floating point constant, it would
normally be loaded once in the initialization section of the program and used later in the program. The value 1.8 can
be loaded using the ATOF (ASCII to float) instruction as follows:

writei2c 0, (SELECTA, F1 8, ATOF, "1.8", 0, FSETO)

Description:

SELECTA, F1.8 select F1_8 as register A

ATOF, "1.8", 0 load the string 1.8 (note: the string must be zero terminated),
convert the string to floating point, and store in register 0

FSETO F1_8 =register[0] (i.e. 1.8)

We calculate the degrees in Fahrenheit (DegF = DegC * 1.8 + 32) as follows:

writei2c 0, (SELECTA, DegF, FSET, DegC, FMUL, F1 8, FADDI, 32)

Description:

SELECTA, DegF select DegF as register A
FSET, DegC DegF = DegC

FMUL, F1_8 DegF = DegF * 1.8
FADDI, 32 DegF = DegF + 32.0

Note: this tutorial example is intended to show how to perform a familiar calculation, but the FCNV instruction
could be used to perform unit conversions in one step. See the uM-FPU V3 Instruction Reference for a full list of
conversions.

There are support routines provided for printing floating point and long integer numbers. Print float prints an
unformatted floating point value and displays up to eight digits of precision. Print floatFormat prints a
formatted floating point number. We’ll use print floatFormat to display the results. The format variable is
used to select the desired format, with the tens digit specifying the total number of characters to display, and the
ones digit specifying the number of digits after the decimal point. The DS1620 has a maximum temperature of 125°

Micromega Corporation 5 Using the uM-FPU V3 with the PICAXE



Celsius and one decimal point of precision, so we’ll use a format of 51. Before calling the print routine the uM-FPU
register is selected and the format variable is set. The following example prints the temperature in degrees Celsius
and Fahrenheit.

writei2c 0, (SELECTA, DegC)
format = 51
gosub print floatFormat

writei2c 0, (SELECTA, DegF)
format = 51
gosub print floatFormat

Sample code for this tutorial and a wiring diagram for the DS1620 are shown at the end of this document. The file
demol.bas is also included with the support software. There is a second file called demo2.bas that extends this demo
to include minimum and maximum temperature calculations. If you have a DS1620 you can wire up the circuit and
try out the demos.

Micromega Corporation 6 Using the uM-FPU V3 with the PICAXE



uM-FPU Support Software for the PICAXE Microcontroller

A template file contains all of the definitions and support code required for communicating with the
uM-FPU V3 chip:
umfpuV3.bas provides support for an I>C connection to the uM-FPU V3 chip

This file can be used directly as the starting point for a new program, or the definitions and support code can be
copied to another program. It contains the following:

*  pin definitions for the uM-FPU V3

* opcode definitions for all uM-FPU V3 instructions

*  various definitions for the byte variable used by the support routines

* asample program with a place to insert your application code

* the support routines described below

fpu_reset

To ensure that the PICAXE and the uM-FPU coprocessor are synchronized, a reset call must be done at the start of
every program. The fpu_reset routine resets the uM-FPU V3 chip, confirms communications, and returns the
sync character 0x5C if the reset is successful. A sample reset call is included in the umfpuV3.bas file.

fpu_wait

The uM-FPU V3 chip must have completed all instructions in the instruction buffer, and be ready to return data,
before sending an instruction to read data from the uM-FPU. The Fpu_Wait routine checks the status of the uM-
FPU and waits until it is ready. The print routines check the ready status, so it isn’t necessary to call Fpu_Wait
before calling a print routine, but if your program reads directly from the uM-FPU using the readi2c command, a
call to Fpu_Wait must be made prior to sending the read instruction. An example of reading a byte value is as
follows:

gosub fpu wait
writei2c 0, (LREADBYTE)
readi2c 0, (dataByte)

Description:

. wait for the uM-FPU to be ready

. send the LREADBYTE instruction
. read a byte value

The uM-FPU V3 chip has a 256 byte instruction buffer. In most cases, data will be read back before 256 bytes have
been sent to the uM-FPU. If a long calculation is done that requires more than 256 bytes to be sent to the uM-FPU,
an Fpu_Wait call should be made at least every 256 bytes to ensure that the instruction buffer doesn’t overflow.

fpu_readStatus

The current status byte is read from the uM-FPU and returned in the statusByte variable.

print_float

The value in register A is displayed on the PC screen as a floating point value using the sertxd command. Up to
eight significant digits will be displayed if required. Very large or very small numbers are displayed in exponential
notation. The length of the displayed value is variable and can be from 3 to 12 characters in length. The special cases
of NaN (Not a Number), +Infinity, -Infinity, and -0.0 are handled. Examples of the display format are as follows:

1.0 NaN 0.0
1.5e20 Infinity -0.0

Micromega Corporation 7 Using the uM-FPU V3 with the PICAXE



3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

print_floatFormat

The value in register A is displayed on the PC screen as a formatted floating point value using the sertxd
command. The format byte is used to specify the desired format. The tens digit specifies the total number of
characters to display and the ones digit specifies the number of digits after the decimal point. If the value is too large
for the format specified, then asterisks will be displayed. If the number of digits after the decimal points is zero, no
decimal point will be displayed. Examples of the display format are as follows:

Value in A register format Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) * k%
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

print_long

The value in register A is displayed on the PC screen as a signed long integer using the sertxd command. The
displayed value can range from 1 to 11 characters in length. Examples of the display format are as follows:

1
500000
-3598390

print_longFormat

The value in register A is displayed on the PC screen as a formatted long integer using the sertxd command. The
format byte is used to specify the desired format. A value between 0 and 15 specifies the width of the display field
for a signed long integer. The number is displayed right justified. If 100 is added to the format value the value is
displayed as an unsigned long integer. If the value is larger than the specified width, asterisks will be displayed. If
the width is specified as zero, the length will be variable. Examples of the display format are as follows:

Value in register A format Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) *kk %k
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

print_version
The uM-FPU version string is displayed on the PC screen using the sertxd command.

print_fpuString

The contents of the uM-FPU V3 string buffer are display to the PC screen using the sertxd command. This call is
made at the end of the print float, print floatFormat, print longand print longFormat
routines so is not normally called directly by the user unless string instructions are being used directly.

Micromega Corporation 8 Using the uM-FPU V3 with the PICAXE



Loading Data Values to the uM-FPU

Most of the data read from devices connected to the PICAXE will return some type of integer value. There are
several ways to load integer values to the uM-FPU and convert them to 32-bit floating point or long integer values.

8-bit Integer to Floating Point

The FSETI, FADDI, FSUBI, FSUBRI, FMULI, FDIVI, FDIVRI, FPOWI, and FCMPTI instructions read the byte
following the opcode as an 8-bit signed integer, convert the value to floating point, and then perform the operation.
It’s a convenient way to work with constants or data values that are signed 8-bit values. The following example
stores the byte variable dataByte to the Result register on the uM-FPU.

writei2c 0, (SELECTA, Result, FSETI, dataByte)

The LOADBYTE instruction reads the byte following the opcode as an 8-bit signed integer, converts the value to
floating point, and stores the result in register O.

The LOADUBYTE instruction reads the byte following the opcode as an 8-bit unsigned integer, converts the value to
floating point, and stores the result in register 0.

16-bit Integer to Floating Point

The LOADWORD instruction reads the two bytes following the opcode as a 16-bit signed integer (MSB first),
converts the value to floating point, and stores the result in register 0. The following example adds the word variable
dataWord (bytes dataHigh and dataLow) to the Result register on the uM-FPU.

writei2c 0, (SELECTA, Result, LOADWORD, dataHigh, dataLow, FADDO)

The LOADUWORD instruction reads the two bytes following the opcode as a 16-bit unsigned integer (MSB first),
converts the value to floating point, and stores the result in register 0.

Floating Point

The FWRITE, FWRITEA, FWRITEX, and FWRITEOQ instructions read the four bytes following the opcode as a 32-
bit floating point value and stores it in the specified register. This is one of the more efficient ways to load floating
point constants, but requires knowledge of the internal representation for floating point numbers (see Appendix B).
The uM-FPU V3 IDE can be used to easily generate the 32-bit values. This example sets Angle = 20.0 (the floating
point representation for 20.0 is hex 41 A00000).

writei2c 0, (FWRITE, Angle, $41, $AO0, $00, $00)

ASCII string to Floating Point

The ATOF instruction is used to convert strings to floating point values. The instruction reads the bytes following the
opcode (until a zero terminator is read), converts the string to floating point, and stores the result in register 0. For
example, to set Angle = 1.5885:

writei2c 0, (SELECTA, Angle, ATOF, "1.5885", 0, FSETO)
8-bit Integer to Long Integer
The LSETI, LADDI, LSUBI, LMULI, LDIVI, LCMPI, LUDIVI, LUCMPI, and LTSTI instructions read the byte
following the opcode as an 8-bit signed integer, convert the value to long integer, and then perform the operation.

It’s a convenient way to work with constants or data values that are signed 8-bit values. The following example adds
the byte variable dataByte to the Total register on the uM-FPU.

writei2c 0, (SELECTA, Total, LADDI, dataByte)

Micromega Corporation 9 Using the uM-FPU V3 with the PICAXE



The LONGBYTE instruction reads the byte following the opcode as an 8-bit signed integer, converts the value to long
integer, and stores the result in register 0.

The LONGUBYTE instruction reads the byte following the opcode as an 8-bit unsigned integer, converts the value to
long integer, and stores the result in register 0.

16-bit Integer to Long Integer

The LONGWORD instruction reads the two bytes following the opcode as a 16-bit signed integer (MSB first),
converts the value to long integer, and stores the result in register 0. The following example adds the word variable
dataWord to the Total register on the uM-FPU.

writei2c 0, (SELECTA, Total, LONGWORD, dataHigh, dataLow, LADDO)

The LONGUWORD instruction reads the two bytes following the opcode as a 16-bit unsigned integer (MSB first),
converts the value to long integer, and stores the result in register 0.

Long Integer

The LWRITE, LWRITEA, LWRITEX, and LWRITEO instructions read the four bytes following the opcode as a 32-
bit long integer value and stores it in the specified register. This is used to load integer values greater than 16 bits.
The uM-FPU V3 IDE can be used to easily generate the 32-bit values. For example, to set Total = 500000:

writei2c 0, (LWRITE, Total, $00, $07, $Al, $20)

ASCII string to Long Integer

The ATOL instruction is used to convert strings to long integer values. The instruction reads the bytes following the
opcode (until a zero terminator is read), converts the string to long integer, and stores the result in register 0. For
example, to set Total = 500000:

writei2c 0, (SELECTA, Total, ATOL, "5000000", 0, FSETO)

The fastest operations occur when the uM-FPU registers are already loaded with values. In time critical portions of
code floating point constants should be loaded beforehand to maximize the processing speed in the critical section.
With 128 registers available on the uM-FPU, it’s often possible to pre-load all of the required constants. In non-
critical sections of code, data and constants can be loaded as required.

Reading Data Values from the uM-FPU

The uM-FPU V3 chip has a 256 byte instruction buffer which allows data transmission to continue while previous
instructions are being executed. Before reading data, you must check to ensure that the previous commands have
completed, and the uM-FPU is ready to send data. The Fpu_Wait routine is used to wait until the uM-FPU is
ready, then a read command is sent, and the readi2c command is used to read data.

Floating Point

The FREAD, FREADA, FREADX, and FREADO instructions read four bytes from the uM-FPU as a 32-bit floating
point value. The following example reads the 32-bit floating point value from register A and stores it in byte
variables byte0, bytel, byte2, and byte3.

gosub Fpu wait
writei2c 0, (FREADA)
readi2c 0, (byte0, bytel, byte2, byte3)

Micromega Corporation 10 Using the uM-FPU V3 with the PICAXE



Floating Point to ASCII string

The FTOA instruction can be used to convert floating point values to an ASCII string. The print float and
print floatFormat routines use this instruction to read the floating point value from register A and display it
on the PC screen.

8-bit Integer
The LREADBYTE instruction reads the lower 8 bits from register A. The following example stores the lower 8 bits
of register A in byte variable dataByte.

gosub Fpu wait
writei2c 0, (LREADBYTE)
readi2c 0, (dataByte)

16-bit Integer
The LREADWORD instruction reads the lower 16 bits from register A. The following example stores the lower 16 bits
of register A in word variable dataWord (bytes dataHigh and dataLow).

gosub Fpu wait
writei2c 0, (LREADWORD)
readi2c 0, (dataHigh, dataLow)

Long Integer

The LREAD, LREADA, LREADX, and LREADO instructions read four bytes from the uM-FPU as a 32-bit long
integer value. The following example reads the 32-bit long integer value from register A and stores it in byte
variables byte0, bytel, byte2, and byte3.

gosub Fpu wait
writei2c 0, (LREADA)
readi2c 0, (byte0, bytel, byte2, byte3)

Long Integer to ASCII string

The LTOA instruction can be used to convert long integer values to an ASCII string. The print long and
print longFormat routines use this instruction to read the long integer value from register A and display it on
the PC screen.

Comparing and Testing Floating Point Values

Floating point values can be zero, positive, negative, infinite, or Not a Number (which occurs if an invalid operation
is performed on a floating point value). The status byte is read using the Fpu_ReadStatus routine. It waits for the
uM-FPU to be ready before sending the READSTATUS command and reading the status from the uM-FPU. The
current status is returned in the statusByte variable. Definitions for the status bits are provided as follows:

symbol IS_ZERO = 0x81 ' positive zero
symbol IS_NZERO = 0x83 ' negative zero
symbol IS_NEGATIVE = 0x82 ' negative

symbol IS NAN = 0x84 ' NaN (Not-a-Number)
symbol IS _PINF = 0x88 ' positive infinity
symbol IS _NINF = 0x8A ' negative infinity

The FSTATUS and FSTATUSA instructions are used to set the status byte to the floating point status of the selected
register. The following example checks the floating point status of register A:

writei2c 0, (FSTATUSA)
gosub fpu readStatus

Micromega Corporation 11 Using the uM-FPU V3 with the PICAXE



IF statusByte IS _ZERO or statusByte = IS NZERO then zeroValue
IF statusByte = IS NEGATIVE then negativeValue
sertxd("value is positive")

negativevValue:
sertxd("value is negative")

zeroValue:
sertxd("value is zero")

The FCMP, FCMPO, and FCMPI instructions are used to compare two floating point values. The status bits are set
for the result of register A minus the operand (the selected registers are not modified). For example, to compare
register A to the value 10.0:

writei2c 0, (FCMPI, 10)

gosub fpu readStatus

IF statusByte = IS ZERO then sameAs

IF statusByte = IS_NEGATIVE then lessThan
sertxd("A > 10")

lessThan:
sertxd("A < 10")

sameAs:
sertxd("A = 10")

The FCMP2 instruction compares two floating point registers. The status bits are set for the result of the first register
minus the second register (the selected registers are not modified). For example, to compare registers Valuel and
Value2:

writei2c 0, (FCMP2, Valuel, Value2)
gosub fpu_readStatus

Comparing and Testing Long Integer Values

A long integer value can be zero, positive, or negative. The status byte is read using the Fpu_ReadStatus
routine. It waits for the uM-FPU to be ready before sending the READSTATUS command and reading the status. The
current status is returned in the statusByte variable. Definitions for the status bits are provided as follows:

symbol IS_ZERO = 0x81 ' zero
symbol IS_NEGATIVE 0x82 ' negative

The LSTATUS and LSTATUSA instructions are used to set the status byte to the long integer status of the selected
register. The following example checks the long integer status of register A:

writei2c 0, (LSTATUSA)

IF statusByte = IS_ZERO then zeroValue

IF statusByte = IS_NEGATIVE then negativevalue
sertxd("value is positive")

negativevalue:
sertxd("value is negative")

zeroValue:
sertxd("value is zero")

Micromega Corporation 12 Using the uM-FPU V3 with the PICAXE



The LCMP, LCMPO, and LCMPI instructions are used to do a signed comparison of two long integer values. The
status bits are set for the result of register A minus the operand (the selected registers are not modified). For
example, to compare register A to the value 10:

writei2c 0, (LCMPI, 10)

gosub fpu readStatus

IF statusByte = IS _ZERO then sameAs

IF statusByte = IS NEGATIVE then lessThan
sertxd("A > 10")

lessThan:
sertxd("A < 10")

sameAs:
sertxd("A = 10")

The LCMP2 instruction does a signed compare of two long integer registers. The status bits are set for the result of
the first register minus the second register (the selected registers are not modified). For example, to compare
registers Valuel and Value2:

writei2c 0, (LCMP2, Valuel, Value2)

gosub fpu readStatus

The LUCMP, LUCMPO, and LUCMPT instructions are used to do an unsigned comparison of two long integer values.
The status bits are set for the result of register A minus the operand (the selected registers are not modified).

The LUCMP2 instruction does an unsigned compare of two long integer registers. The status bits are set for the
result of the first register minus the second register (the selected registers are not modified).

The LTST, LTSTO and LTSTT instructions are used to do a bit-wise compare of two long integer values. The status
bits are set for the logical AND of register A and the operand (the selected registers are not modified).

Further Information

The following documents are also available:

uM-FPU V3 Datasheet provides hardware details and specifications
uM-FPU V3 Instruction Reference provides detailed descriptions of each instruction
uM-FPU V3 Application Notes various application notes and examples

Check the Micromega website at www.micromegacorp.com for up-to-date information.

Micromega Corporation 13 Using the uM-FPU V3 with the PICAXE



DS1620 Connections for Demo 1

PICAXE Pins +5V
1K DS1620
input 7 DATAIN Hba vop [&
output 6 CLK ——————2cik  THIGH [F—
output 7 RST ———3{rst  mLow [~
f GND TCOM [—

Sample Code for Tutorial (Demo1.bas)

This program demonstrates the use of the uM-FPU V3 floating point coprocessor
with the PICAXE microcontroller using an I2C interface. It takes temperature
readings from a DS1620 digital thermometer, converts them to floating point
and displays them in degrees Celsius and degrees Fahrenheit.

e uM-FPU V3 I2C definitions —————————cmmmmmo——e 2006-10-18

symbol fpulID = 0xC8 ' uM-FPU I2C address
fmm uM-FPU V3 opcode definitions --—-—-——————-————— e

symbol SELECTA = 0x01 ' Select register A

symbol ATOF = 0x1E ' Convert ASCII to float, store in reg[0]
symbol FTOA 0x1F ' Convert float to ASCII
symbol FSET 0x20 ' reg[A] reg[nn]

symbol FMUL 0x24 ' reg[A] reg[A] * reg[nn]
symbol FSETO = 0x29 ' reg[A] = reg[0]

symbol FADDI 0x33 ' reg[A] = reg[A] + float(bb)
symbol FDIVI 0x37 ' reg[A] = reg[A] / float(bb)
symbol LOADWORD = 0x5B ' reg[0] = float(signed word)
symbol LOADWORD 0x5B ' reg[0] = float(signed word)
symbol SYNC 0xFO0 ' Get synchronization byte
symbol READSTATUS 0xF1l ' Read status byte

symbol READSTR = 0xF2 ' Read string from string buffer
symbol VERSION = 0xF3 ' Copy version string to string buffer
symbol SYNC_CHAR = 0x5C ' sync character

———————————————————— uM-FPU variables —-———————— e

symbol dataByte = bl3 ' data byte
symbol format = bl3 ' format (same as dataByte)
symbol statusByte = bl3 ' status byte (same as dataByte)

! end of uM-FPU V3 I2C definitions

e ———————— DS1620 pin definitions —-—-—————=——

symbol DS_RST = output?7 ' DS1620 reset/enable
symbol DS _CLK = output6 ' DS1620 clock
symbol DS_DATAOUT = output5 ' DS1620 data out

Micromega Corporation 14 Using the uM-FPU V3 with the PICAXE



symbol DS DATAIN = input?7 ' DS1620 data in
B et uM-FPU register definitions --—-—-—=-——=———m =
symbol DegC =1 ' degrees Celsius
symbol DegF = 2 ' degrees Fahrenheit
symbol F1 8 =3 ' constant 1.8
e variables —-——-—=————————————_- — —_ — —
symbol rawTemp = WO ' raw temperature reading
symbol rawHigh = BO ' high byte of raw temperature
symbol rawLow = Bl ' low byte of raw temperature
symbol bitcnt = B2 ' bit count
symbol tmp = B3 ' temporary variable
e ———————— main routine ---—-——-— - oo 0 F 0 i i i ————————
main:
sertxd(13, 10, 13, 10, "Demo 1: ")

main2:

i2cslave fpulD, i2cfast,
gosub fpu reset
if statusByte = SYNC CHAR then main2

sertxd (13,

end

10,

gosub print version

' initialize DS1620

gosub init_DS1620

i2cbyte

' reset the uM-FPU

"uM-FPU not detected.")

display the uM-FPU version number

load floating point constant

(SELECTA, F1 8, ATOF, "1.8", 0, FSETO0)

writei2c O,

displayLoop:

1

get temperature reading from DS1620

gosub read_DS1620

' send rawTemp to uM-FPU V3

1

convert to floating point
divide by 2 to get degrees Celsius

(SELECTA, DegC, LOADWORD, rawHigh, rawLow, FSETO, FDIVI, 2)

writei2c O,

' degF = degC * 1.8 + 32

writei2c O,

(SELECTA, DegF, FSET, DegC, FMUL, F1 8, FADDI, 32)

display degrees Celsius

Micromega Corporation

15 Using the uM-FPU V3 with the PICAXE



sertxd (13,

writei2c 0,
format 51
gosub print_floatFormat

10, 13, 10,
(SELECTA, DegC)

'display degrees Fahrenheit

sertxd (13, 10, "Degrees F:
writei2c 0, (SELECTA, DegF)
format = 51

gosub print floatFormat

"Degrees C:

")

")

'delay, then get the next reading

pause 2000
goto displayLoop
end

init_DS1620:
low DS_RST
high DS_CLK
pause 100

high DS_RST

dataByte = $0C
gosub write DS1620
dataByte = $02
gosub write DS1620
low DS_RST

pause 100

high DS_RST

dataByte = $EE
gosub write DS1620
low DS_RST

pause 1000

return

read DS1620:
high DS RST
dataByte SAA
gosub write DS1620

1

for bitent 1 to 8
low DS_CLK
rawLow rawLow / 2
if DS _DATAIN
rawLow rawLow + 128
high DS_CLK

next bitecnt

read2:

low DS_CLK
rawHigh 0
if DS_DATAIN

0 then read3

Micromega Corporation

initialize pin states

configure for CPU control

start temperature conversions

wait for first conversion

read temperature value

read byte from DS1620 (LSB first)

0 then read2

read 9th bit and extend sign

16 Using the uM-FPU V3 with the PICAXE



rawHigh = $FF
read3:
high DS_CLK
low DS_RST
return

write DS1620:
for bitcnt = 1 to 8
tmp = dataByte & 1
low DS DATAOUT
if tmp = 0 then write2
high DS DATAOUT
write2: pulsout DS_CLK, 1
dataByte = dataByte / 2
next bitcnt
return

write byte to DS1620 (LSB first)

pulse clock for 10us

2006-10-18

fpu reset:

writei2c 1, (0)
pause 10
writei2c 0, (SYNC)

goto fpu_readStatus2

fpu wait:

readi2c 0, (statusByte)

reset the uM-FPU
wait for reset to complete

check for synchronization

wait for ready status

if statusByte <> 0 then fpu wait

return

fpu readStatus:
gosub fpu wait

writei2c 0, (READSTATUS)
fpu_readstatus2:
readi2c 0, (statusByte)
return
print_version:
writei2c 0, (VERSION)

goto print fpuString

print float:
format = 0

print_floatFormat:
writei2c 0, (FTOA, format)
goto print fpuString

print long:
format = 0

Micromega Corporation

read status byte

read status byte

print it

set for free format

get the uM-FPU version string

' (fall through to print floatFormat)

convert floating point to formatted ASCII

1

print the string

set for free format

17

(fall through to print_ longFormat)

Using the uM-FPU V3 with the PICAXE



print longFormat:
writei2c 0, (LTOA, format) ' convert long integer to formatted ASCII
' (fall through to print fpuString)
print_fpuString:
gosub fpu wait
writei2c 0, (READSTR)

wait until uM-FPU is ready

print_string2:
readi2c 0, (dataByte) ' display zero terminated string
if dataByte = 0 then Print String3
if dataByte > 127 then Print String3
sertxd(dataByte)
goto Print String2

print string3:
return

end of string

end of uM-FPU V3 I2C support routines

Micromega Corporation 18 Using the uM-FPU V3 with the PICAXE



Appendix A
uM-FPU V3 Instruction Summary

Instruction Opcode Arguments Returns Description
NOP 00 No Operation
SELECTA 01 | nn Select register A
SELECTX 02 | nn Select register X
CLR 03 | nn reglnn] =0
CLRA 04 reg[A] =0
CLRX 05 reg[X]=0, X=X+ 1
CLRO 06 reg[nn] = reg[0]
COPY 07 | mm,nn reg[nn] = reg[mm]
COPYA 08 | nn reg[nn] = reg[A]
COPYX 09 | nn reglnn] = reg[X], X = X + 1
LOAD 0A | nn reg[0] = reg[nn]
LOADA 0B reg[0] = reg[A]
LOADX 0C reg[0] = reg[X], X = X + 1
ALOADX 0D reg[A] =reg[X], X=X + 1
XSAVE O0E | nn reg[X] =reg[nn], X = X + 1
XSAVEA OF reg[X] = reg[A], X=X + 1
COPYO0 10 | nn reg[nn] = reg[0]
COPYI 11 | bb,nn reg[nn] = long(unsigned byte bb)
SWAP 12 | nn, mm Swap reg[nn] and reg[mm]
SWAPA 13 | nn Swap reg[nn] and reg[A]
LEFT 14 Left parenthesis
RIGHT 15 Right parenthesis
FWRITE 16 | nn,bl,b2,b3,b4d Write 32-bit floating point to reg[nn]
FWRITEA 17 | bl,b2,b3,b4 Write 32-bit floating point to reg[A]
FWRITEX 18 | bl,b2,b3,b4 Write 32-bit floating point to reg[X]
FWRITEOQ 19 | bl,b2,b3,b4 Write 32-bit floating point to reg[0]
FREAD 1A | nn bl,b2,b3,b4 | Read 32-bit floating point from reg[nn]
FREADA 1B bl,b2,b3,b4 | Read 32-bit floating point from reg[A]
FREADX 1C bl,b2,b3,b4 | Read 32-bit floating point from reg[X]
FREADO 1C bl,b2,b3,b4 | Read 32-bit floating point from reg[0]
ATOF 1E | aa..00 Convert ASCII to floating point
FTOA 1F | bb Convert floating point to ASCII
FSET 20 | nn reg[A] = reg[nn]
FADD 21 | nn reg[A] = reg[A] + reg[nn]
FSUB 22 | nn reg[A] = reg[A] - reg[nn]
FSUBR 23 | nn reg[A] = reg[nn] - reg[A]
FMUL 24 | nn reg[A] = reg[A] * reg[nn]
FDIV 25 | nn reg[A] = reg[A] / reg[nn]
FDIVR 26 | nn reg[A] = reg[nn] / reg[A]
FPOW 27 | nn reg[A] = reg[A] ** reg[nn]
FCMP 28 | nn Compare reg[Al], reg[nn],
Set floating point status
FSETO0 29 reg[A] = reg|[0]
FADDO 2A reg[A] = reg[A] + reg[0]
Micromega Corporation 19 Using the uM-FPU V3 with the PICAXE




FSUBO 2B reg[A] = reg[A] - reg[0]
FSUBRO 2C reg[A] = reg[0] - reg[A]
FMULO 2D reg[A] = reg[A] * reg[0]
FDIVO 2E reg[A] = reg[A] / reg[0]
FDIVRO 2F reg[A] = reg[0] / reg[A]
FPOWO 30 reg[A] = reg[A] ** reg[0]
FCMPO 31 Compare reg[Al], reg[0],

Set floating point status
FSETI 32 | bb reg[A] = float(bb)
FADDI 33 | bb reg[A] = reg[A] - float(bb)
FSUBI 34 | bb reg[A] = reg[A] - float(bb)
FSUBRI 35 | bb reg[A] = float(bb) - reg[A]
FMULI 36 | bb reg[A] = reg[A] * float(bb)
FDIVI 37 | bb reg[A] = reg[A] / float(bb)
FDIVRI 38 | bb reg[A] = float(bb) / reg[A]
FPOWI 39 | bb reg[A] = reg[A] ** bb
FCMPI 3A | bb Compare reg[Al], float(bb),

Set floating point status
FSTATUS 3B | nn Set floating point status for reg[nn]
FSTATUSA 3C Set floating point status for reg[A]
FCMP2 3D | nn,mm Compare reg[nn], reg[mm]

Set floating point status
FNEG 3E reg[A] = -reg[A]
FABS 3F reg[A] = | reg[A] |
FINV 40 reg[A] = 1/ reg[A]
SQRT 41 reg[A] = sqrt(reg[A])
ROOT 42 | nn reg[A] = root(reg[A], reg[nn])
LOG 43 reg[A] = log(reg[A])
LOG10 44 reg[A] = log10(reg[A])
EXP 45 reg[A] = exp(reg[A])
EXP10 46 reg[A] = exp10(reg[A])
SIN 47 reg[A] = sin(reg[A])
COS 48 reg[A] = cos(reg[A])
TAN 49 reg[A] = tan(reg[A])
ASIN 4A reg[A] = asin(reg[A])
ACOS 4B reg[A] = acos(reg[A])
ATAN 4C reg[A] = atan(reg[A])
ATAN?2 4D | nn reg[A] = atan2(reg[A], reg[nn])
DEGREES 4E reg[A] = degrees(reg[A])
RADIANS 4F reg[A] = radians(reg[A])
FMOD 50 | nn reg[A] = reg[A] MOD reg[nn]
FLOOR 51 reg[A] = floor(reg[A])
CEIL 52 reg[A] = ceil(reg[A])
ROUND 53 reg[A] = round(reg[A])
FMIN 54 | nn reg[A] = min(reg[A], reg[nn])
FMAX 55 | nn reg[A] = max(reg[Al], reg[nn])
FCNV 56 | bb reg[A] = conversion(bb, reg[A])
FMAC 57 | nn, mm reg[A] = reg[A] + (reg[nn] * reg[mm])
FMSC 58 | nn, mm reg[A] = reg[A] - (reg[nn] * reg[mm])

Micromega Corporation

20

Using the uM-FPU V3 with the PICAXE



LOADBYTE 59 | bb reg[0] = float(signed bb)

LOADUBYTE 5A | bb reg[0] = float(unsigned byte)

LOADWORD 5B | bl,b2 reg[0] = float(signed b1*256 + b2)

LOADUWORD 5C | bl,b2 reg[0] = float(unsigned b1*256 + b2)

LOADE 5D reg[0] = 2.7182818

LOADPI 5E reg[0] = 3.1415927

LOADCON 5F | bb reg[0] = float constant(bb)

FLOAT 60 reg[A] = float(reg[A])

FIX 61 reg[A] = fix(reg[A])

FIXR 62 reg[A] = fix(round(reg[A]))

FRAC 63 reg[A] = fraction(reg[A])

FSPLIT 64 reg[A] = integer(reg[A]),
reg[0] = fraction(reg[A])

SELECTMA 65 | nn,bl,b2 Select matrix A

SELECTMB 66 | nn,bl,b2 Select matrix B

SELECTMC 67 | nn,bl,b2 Select matrix C

LOADMA 68 | bl,b2 reg[0] = Matrix A[bb, bb]

LOADMB 69 | bl,b2 reg[0] = Matrix B[bb, bb]

LOADMC 6A | bl,b2 reg[0] = Matrix C[bb, bb]

SAVEMA 6B | bl,b2 Matrix A[bb, bb] = reg[A]

SAVEMB 6C | bl,b2 Matrix B[bb, bb] = reg[A]

SAVEMC 6D | bl,b2 Matrix C[bb, bb] = reg[A]

MOP 6E | bb Matrix/Vector operation

LOADIND 7A | nn reg[0] = reg[reg[nn]]

SAVEIND 7B | nn reg[reg[nn]] = reg[A]

INDA 7C | nn Select register A using value in reg[nn]

INDX 7D | nn Select register X using value in reg[nn]

FCALL 7E | £fn Call user-defined function in Flash

EECALL 7F | fn Call user-defined function in EEPROM

RET 80 Return from user-defined function

BRA 81 | bb Unconditional branch

BRA, cc 82 | cc,bb Conditional branch

JMP 83 | bl,b2 Unconditional jump

JMP, cc 84 | cc,bl,b2 Conditional jump

TABLE 85 | tc,t0..tn Table lookup

FTABLE 86 | cc,tc,t0..tn Floating point reverse table lookup

LTABLE 87 | cc,tc,t0..tn Long integer reverse table lookup

POLY 88 | tc,t0..tn reg[A] = nth order polynomial

GOTO 89 | nn Computed GOTO

LWRITE 90 | nn,bl,b2,b3,bd Write 32-bit long integer to reg[nn]

LWRITEA 91 | bl,b2,b3,b4 Write 32-bit long integer to reg[A]

LWRITEX 92 | bl,b2,b3,b4d Write 32-bit long integer to reg[X],
X=X+1

LWRITEOQ 93 | bl,b2,b3,b4 Write 32-bit long integer to reg[0]

LREAD 94 | nn bl,b2,b3,b4 | Read 32-bit long integer from reg[nn]

LREADA 95 bl,b2,b3,b4 | Read 32-bit long value from reg[A]

LREADX 96 bl,b2,b3,b4 | Read 32-bit long integer from reg[X],
X=X+1

LREADO 97 bl,b2,b3,b4 | Read 32-bit long integer from reg[0]

Micromega Corporation 21 Using the uM-FPU V3 with the PICAXE




LREADBYTE 98 bb Read lower 8 bits of reg[A]

LREADWORD 99 bl,b2 Read lower 16 bits reg[A]

ATOL 9A | aa..00 Convert ASCII to long integer

LTOA 9B | bb Convert long integer to ASCII

LSET 9C | nn reg[A] = reg[nn]

LADD 9D | nn reg[A] = reg[A] + reg[nn]

LSUB 9E | nn reg[A] = reg[A] - reg[nn]

LMUL 9F | nn reg[A] = reg[A] * reg[nn]

LDIV A0 | nn reg[A] = reg[A] / reg[nn]
reg[0] = remainder

LCMP Al | nn Signed compare reg[A] and reg[nn],
Set long integer status

LUDIV A2 | nn reg[A] = reg[A] / reg[nn]
reg[0] = remainder

LUCMP A3 | nn Unsigned compare reg[A] and reg[nn],
Set long integer status

LTST A4 | nn Test reg[A] AND reg[nn],
Set long integer status

LSETO0 A5 reg[A] = reg[0]

LADDO A6 reg[A] = reg[A] + reg[0]

LSUBO A7 reg[A] = reg[A] - reg[0]

LMULO A8 reg[A] = reg[A] * reg[0]

LDIVO A9 reg[A] = reg[A] / reg[0]
reg[0] = remainder

LCMPO AA Signed compare reg[A] and reg[0],
set long integer status

LUDIVO AB reg[A] = reg[A] / reg[0]
reg[0] = remainder

LUCMPO AC Unsigned compare reg[A] and reg|[0],
Set long integer status

LTSTO AD Test reg[A] AND reg[0],
Set long integer status

LSETI AE | bb reg[A] = long(bb)

LADDI AF | bb reg[A] = reg[A] + long(bb)

LSUBI BO | bb reg[A] = reg[A] - long(bb)

LMULI Bl | bb reg[A] = reg[A] * long(bb)

LDIVI B2 | bb reg[A] = reg[A] / long(bb)
reg[0] = remainder

LCMPI B3 | bb Signed compare reg[A] - long(bb),
Set long integer status

LUDIVI B4 | bb reg[A] = reg[A] / unsigned long(bb)
reg[0] = remainder

LUCMPI B5 | bb Unsigned compare reg[A] and long(bb),
Set long integer status

LTSTI B6 | bb Test reg[A] AND long(bb),
Set long integer status

LSTATUS B7 | nn Set long integer status for reg[nn]

LSTATUSA B8 Set long integer status for reg[A]

LCMP2 B9 | nn,mm Signed long compare reg[nn], reg[mm]
Set long integer status

Micromega Corporation 22 Using the uM-FPU V3 with the PICAXE



LUCMP2 BA | nn,mm Unsigned long compare reg[nn], reg[mm]
Set long integer status
LNEG BB reg[A] = -reg[A]
LABS BC reg[A] = | reg[A] |
LINC BD | nn reg[nn] = reg[nn] + 1, set status
LDEC BE | nn reg[nn] = reg[nn] - 1, set status
LNOT BF reg[A] = NOT reg[A]
LAND CO | nn reg[A] = reg[A] AND reg[nn]
LOR Cl | nn reg[A] = reg[A] OR reg[nn]
LXOR C2 | nn reg[A] = reg[A] XOR reg[nn]
LSHIFT C3 | nn reg[A] = reg[A] shift reg[nn]
LMIN C4 | nn reg[A] = min(reg[A], reg[nn])
LMAX C5 | nn reg[A] = max(reg[Al, reg[nn])
LONGBYTE C6 | bb reg[0] = long(signed byte bb)
LONGUBYTE C7 | bb reg[0] = long(unsigned byte bb)
LONGWORD C8 | bl,b2 reg[0] = long(signed b1*256 + b2)
LONGUWORD C9 | bl,b2 reg[0] = long(unsigned b1*256 + b2)
LONGCON CA | bb reg[0] = long constant(nn)
SETOUT DO | bb Set OUT1 and OUT2 output pins
ADCMODE D1 | bb Set A/D trigger mode
ADCTRIG D2 A/D manual trigger
ADCSCALE D3 | ch ADCscale[ch] = reg[0]
ADCLONG D4 | ch reg[0] = ADCvalue[ch]
ADCLOAD D5 [ ch reg[0] =
float(ADCvalue[ch]) * ADCscale[ch]
ADCWAIT D6 wait for next A/D sample
TIMESET D7 time = reg[0]
TIMELONG D8 reg[0] = time (long integer)
TICKLONG D9 reg[0] = ticks (long integer)
EESAVE DA | nn,ee EEPROM][ee] = reg[nn]
EESAVEA DB | ee EEPROM][ee] = reg[A]
EELOAD DC | nn,ee reg[nn] = EEPROM[e€]
EELOADA DD | ee reg[A] = EEPROM][ee]
EEWRITE DE | ee,bc,bl..bn Store bytes starting at EEPROM]|ee]
EXTSET EO external input count = reg[0]
EXTLONG El reg[0] = external input counter
EXTWAIT E2 wait for next external input
STRSET E3 | aa..00 Copy string to string buffer
STRSEL E4 | bb, bb Set selection point
STRINS E5 | aa..00 Insert string at selection point
STRCMP E6 | aa..00 Compare string with string buffer
STRFIND E7 | aa..00 Find string and set selection point
STRFCHR E8 | aa..00 Set field separators
STRFIELD E9 | bb Find field and set selection point
STRTOF EA Convert string selection to floating point
STRTOL EB Convert string selection to long integer
READSEL EC aa..00 Read string selection
SYNC FO 5C Get synchronization byte
READSTATUS | F1 ss Read status byte
Micromega Corporation 23 Using the uM-FPU V3 with the PICAXE




READSTR F2 aa..00 Read string from string buffer
VERSION F3 Copy version string to string buffer
IEEEMODE F4 Set IEEE mode (default)
PICMODE F5 Set PIC mode
CHECKSUM F6 Calculate checksum for uM-FPU code
BREAK F7 Debug breakpoint
TRACEOFF F8 Turn debug trace off
TRACEON F9 Turn debug trace on
TRACESTR FA | aa..00 Send string to debug trace buffer
TRACEREG FB | nn Send register value to trace buffer
READVAR FC | nn Read internal register value
RESET FF Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)
Notes: Opcode Opcode value in hexadecimal

Arguments Additional data required by instruction

Returns Data returned by instruction

nn register number (0-127)

mm register number (0-127)

fn function number (0-63)

bb 8-bit value

bl,b2 16-bit value (b1 is MSB)

bl,b2,b3,bd4  32-bit value (b1 is MSB)

bl...bn string of 8-bit bytes

ss Status byte

cc Condition code

ee EEPROM address slot (0-255)

ch A/D channel number

bec Byte count

tl...tn String of 32-bit table values

aa...00 Zero terminated ASCII string

Micromega Corporation 24

Using the uM-FPU V3 with the PICAXE



Appendix B

Floating Point Numbers

Floating point numbers can store both very large and very small values by “floating” the window of precision to fit
the scale of the number. Fixed point numbers can’t handle very large or very small numbers and are prone to loss of
precision when numbers are divided. The representation of floating point numbers used by the uM-FPU V3 is
defined by the 32-bit IEEE 754 standard. The number of significant digits for a 32-bit floating point number is

slightly more than 7 digits, and the range of values that can be handled is approximately + 1038'53.

32-bit IEEE 754 Floating Point Representation

IEEE 754 floating point numbers have three components: a sign, exponent, the mantissa. The sign indicates whether
the number is positive or negative. The exponent has an implied base of two and a bias value. The mantissa
represents the fractional part of the number.

The 32-bit IEEE 754 representation is as follows:

Bit 31 30 23 22 0

| S | Exponent | Mantissa

Sign Bit (bit 31)

The sign bit is O for a positive number and 1 for a negative number.

Exponent (bits 30-23)

The exponent field is an 8-bit field that stores the value of the exponent with a bias of 127 that allows it to
represent both positive and negative exponents. For example, if the exponent field is 128, it represents an
exponent of one (128 — 127 = 1). An exponent field of all zeroes is used for denormalized numbers and an
exponent field of all ones is used for the special numbers +infinity, -infinity and Not-a-Number (described
below).

Mantissa (bits 30-23)

The mantissa is a 23-bit field that stores the precision bits of the number. For normalized numbers there is
an implied leading bit equal to one.

Special Values

Zero

A zero value is represented by an exponent of zero and a mantissa of zero. Note that +0 and —0 are
distinct values although they compare as equal.

Denormalized

If an exponent is all zeros, but the mantissa is non-zero the value is a denormalized number.
Denormalized numbers are used to represent very small numbers and provide for an extended range
and a graceful transition towards zero on underflows. Note: The uM-FPU does not support operations

Micromega Corporation 25 Using the uM-FPU V3 with the PICAXE



using denormalized numbers.

Infinity
The values +infinity and —infinity are denoted with an exponent of all ones and a fraction of all zeroes.
The sign bit distinguishes between +infinity and —infinity. This allows operations to continue past an
overflow. A nonzero number divided by zero will result in an infinity value.

Not A Number (NaN)
The value NaN is used to represent a value that does not represent a real number. An operation such as
zero divided by zero will result in a value of NaN. The NaN value will flow through any mathematical
operation. Note: The uM-FPU initializes all of its registers to NaN at reset, therefore any operation that
uses a register that has not been previously set with a value will produce a result of NaN.

Some examples of 32-bit IEEE 754 floating point values displayed as four byte values are as follows:

$00, $00, $00, $O00 '0.0

$3D, $CC, $CC, $CD 0.1

$3F, $00, $00, $00 '0.5

$3F, $40, $00, $00 '0.75

$3F, S$7F, SF9, $72 '0.9999

$3F, $80, $00, $00 '1.0

$40, $00, $00, $O00 '2.0

$40, $2D, SF8, $54 '2.7182818 (e)
$40, $49, SOF, S$SDB '3.1415927 (pi)
$41, $20, $00, $00 '10.0

$42, s$C8, $00, $00 '100.0

$44, S$7A, $00, $00 '1000.0

$44, $9A, $52, $2B '1234.5678
$49, $74, $24, $00 '1000000.0
$80, $00, $00, $O00 '-0.0

$BF, $80, $00, $00 '-1.0

$Ccl, $20, $00, $00 '-10.0

$Cc2, s$c8, $00, s$00 '-100.0

$7F, S$CO, $00, $00 'NaN (Not-a-Number)
$7F, $80, $00, $00 "+inf

SFF, $80, $00, $00 '—-inf

Micromega Corporation 26 Using the uM-FPU V3 with the PICAXE



