
uM-FPU V3
Instruction Reference
32-bit Floating Point Coprocessor

Introduction
The uM-FPU V3 floating point coprocessor provides instructions for working with 32-bit IEEE 754 compatible
floating point numbers and 32-bit long integer. A typical calculation involves sending instructions and data from the
microcontroller to the uM-FPU, performing the calculation, and transferring the result back to the microcontroller.

Microcontroller
uM-FPU

V3

Read results

Perform calculations

Send data and

instructions

Instructions and data are sent to the uM-FPU using either a SPI or I2C interface. The uM-FPU V3 has a 256 byte
instruction buffer which allows for multiple instructions to sent. This improves the transfer times and allows the
microcontroller to perform other tasks while the uM-FPU is performing a series of calculations. Prior to issuing any
instruction that reads data from the uM-FPU, the Busy/Ready status must be checked to ensure that all instructions
have been executed. If more than 256 bytes are required to specify a sequence of operations, the Busy/Ready status
must be checked at least every 256 bytes to ensure that the instruction buffer does not overflow. See the datasheet for
more detail regarding the SPI or I2C interfaces.

Instructions consist of an single opcode byte, optionally followed by addition data bytes. A detailed description of
each instruction is provided later in this document, and a summary table is provided in Appendix A.

Micromega Corporation 1 Revised 2006-09-25

Micromega Corporation 2 uM-FPU V3 Instruction Reference

Micromega Corporation 3 uM-FPU V3 Instruction Reference

uM-FPU Registers
The uM-FPU V3 contains 128 general purpose registers, and 8 temporary registers. All registers are 32-bits and can
be used to store either floating point or long integer values. The general purpose registers are numbered 0 to 63, and
can be directly accessed by the instruction set. The eight temporary registers are used by the LEFT and RIGHT
parenthesis instructions to store temporary results and can’t be accessed directly.
Register 0 is normally only used to store temporary values, since it is modified by many instructions.

Temporary Registers

32-bit Register

32-bit Register

32-bit Register

32-bit Register

•

•

•

32-bit Register

Register A

Register X

0

1

2

3

127

•

•

•

32-bit Register

•

•

•

32-bit Register

T1

T8

•

•

•

General Registers

Register A
To perform arithmetic operations, one of the uM-FPU registers is selected as register A. Register A can be regarded
as the accumulator or working register. Arithmetic instructions use the value in register A as an operand and store the
results of an operation in register A. Any register can be selected as register A using the SELECTA instruction. For
example,

SELECTA,5 select register 5 as register A

Arithmetic instructions that only involve one register implicitly refer to register A. For example,
FNEG negate the value in register A

Arithmetic instructions that use two registers will specify the second register as part of the instruction. For example,

FADD,4 add the value of register 4 to register A

Register X
Register X is used to reference a series of sequential registers. The register X selection is automatically incremented
to the next register in sequence by all instructions that use register X. Any register can be selected as register X
using the SELECTX instruction. For example,

SELECTX,16 select register 16 as register X
CLRX clear register 16 (and increment register X)
CLRX clear register 17 (and increment register X)
CLRX clear register 18 (and increment register X)

Micromega Corporation 2 uM-FPU V3 Instruction Reference

Micromega Corporation 3 uM-FPU V3 Instruction Reference

Micromega Corporation 4 uM-FPU V3 Instruction Reference

Another example is using the FWRITEX and READX instructions to store and retrieve blocks of data.

In this document the following the following abbreviations are used to refer to registers:
reg[0] register 0
reg[A] register A
reg[X] register X
reg[nn] any one of the 127 general purpose registers

Micromega Corporation 3 uM-FPU V3 Instruction Reference

Micromega Corporation 4 uM-FPU V3 Instruction Reference

Micromega Corporation 5 uM-FPU V3 Instruction Reference

Floating Point Instructions
The following descriptions provide a quick summary of the floating point instructions. Detailed descriptions are
provided in the next section.

Basic Floating Point Instructions
Each of the basic floating point arithmetic instructions are provided in three different forms as shown in the table
below. The FADD instruction will be used as an example to describe the three different forms of the instructions. The
FADD,nn instruction allows any general purpose register to be added to register A. The register to be added to
register A is specified by the byte following the opcode. The FADD0 instruction adds register 0 to register A and only
requires the opcode. The FADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)
following the opcode is converted to floating point and added to register A. The FADD,nn instruction is most
general, but the FADD0 and FADDI,bb instructions are more efficient for many common operations.

Register nn
FSET,nn
FADD,nn
FSUB,nn
FSUBR,nn
FMUL,nn
FDIV,nn
FDIVR,nn
FPOW,nn
FCMP,nn

Register 0
FSET0
FADD0
FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

Immediate value
FSETI,bb
FADDI,bb
FSUBI,bb
FSUBRI,bb
FMULI,bb
FDIVI,bb
FDIVRI,bb
FPOWI,bb
FCMPI,bb

Description
Set
Add
Subtract
Subtract Reverse
Multiply
Divide
Divide Reverse
Power
Compare

Loading Floating Point Values
The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit
floating point values.

FWRITE,nn,b1,b2,b3,b4 Write 32-bit floating point value to reg[nn]
FWRITEA,b1,b2,b3,b4 Write 32-bit floating point value to reg[A]
FWRITEX,b1,b2,b3,b4 Write 32-bit floating point value to reg[X]
FWRITE0,b1,b2,b3,b4 Write 32-bit floating point value to reg[0]
ATOF,aa...00 Convert ASCII string to floating point value and store in reg[0]
LOADBYTE,bb Convert signed byte to floating point and store in reg[0]
LOADUBYTE,bb Convert unsigned byte to floating point and store in reg[0]
LOADWORD,b1,b2 Convert signed 16-bit value to floating point and store in reg[0]
LOADUWORD,b1,b2 Convert unsigned 16-bit value to floating point and store in reg[0]

Reading Floating Point Values
The following instructions are used to read floating point values from the uM-FPU.

FREAD,nn [b1,b2,b3,b4] Return 32-bit floating point value from reg[nn]
FREADA [b1,b2,b3,b4] Return 32-bit floating point value from reg[A]
FREADX [b1,b2,b3,b4] Return 32-bit floating point value from reg[X]
FREAD0 [b1,b2,b3,b4] Return 32-bit floating point value from reg[0]
FTOA,bb Convert floating point to ASCII string (use READSTR to read string)

Micromega Corporation 4 uM-FPU V3 Instruction Reference

Micromega Corporation 5 uM-FPU V3 Instruction Reference

Micromega Corporation 6 uM-FPU V3 Instruction Reference

Additional Floating Point Instructions

FSTATUS,nn
FSTATUSA
FCMP2,nn,mm
FNEG
FABS
FINV
SQRT
ROOT,nn
LOG
LOG10
EXP

EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2,nn
DEGREES
RADIANS
FMOD

FLOOR
CEIL
ROUND
FMIN,nn
FMAX,nn
FCNV,bb
FMAC,nn,mm
FMSC,nn,mm
LOADE
LOADPI
LOADCON,bb

FRACTION

Matrix Instructions
SELECTMA,nn,b1,b2 select matrix A at register nn of size b1 rows x b2 columns
SELECTMB,nn,b1,b2 select matrix B at register nn of size b1 rows x b2 columns
SELECTMC,nn,b1,b2 select matrix C at register nn of size b1 rows x b2 columns
LOADMA,b1,b2 load reg[0] with value from matrix A row b1, column b2
LOADMB,b1,b2 load reg[0] with value from matrix B row b1, column b2
LOADMC,b1,b2 load reg[0] with value from matrix C r row b1, column b2
SAVEMA,b1,b2 store reg[A] value to matrix A row b1, column b2
SAVEMB,b1,b2 store reg[A] value to matrix A row b1, column b2
SAVEMC,b1,b2 store reg[A] value to matrix A row b1, column b2
MOP,bb perform matrix operation

Fast Fourier Transform Instruction
FFT perform Fast Fourier Transform operation

Conversion Instructions
FLOAT convert reg[A] from long integer to floating point
FIX convert reg[A] from floating point to long integer
FIXR convert reg[A] from floating point to long integer (with rounding)
FSPLIT reg[A] = integer value, reg[0] = fractional value

Micromega Corporation 5 uM-FPU V3 Instruction Reference

Micromega Corporation 6 uM-FPU V3 Instruction Reference

Micromega Corporation 7 uM-FPU V3 Instruction Reference

Long Integer Instructions
The following descriptions provide a quick summary of the long integer instructions. Detailed descriptions are
provided in the next section.

Basic Long Integer Instructions
Each of the basic long integer arithmetic instructions are provided in three different forms as shown in the table
below. The LADD instruction will be used as an example to descibe the three different forms of the instructions. The
LADD,nn instruction allows any general purpose register to be added to register A. The register to be added to
register A is specified by the byte following the opcode. The LADD0 instruction adds register 0 to register A and only
requires the opcode. The LADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)
following the opcode is converted to a long integer and added to register A. The LADD,nn instruction is most
general, but the LADD0 and LADDB,bb instructions are more efficient for many common operations.

Register nn
LSET,nn
LADD,nn
LSUB,nn
LMUL,nn
LDIV,nn
LCMP,nn
LUDIV,nn
LUCMP,nn
LTST,nn

Register 0
LSET0
LADD0
LSUB0
LMUL0
LDIV0
LCMP0
LUDIV0
LUCMP0
LTST0

Immediate value
LSETI,bb
LADDI,bb
LSUBI,bb
LMULI,bb
LDIVI,bb
LCMPI,bb
LUDIVI,bb
LUCMPI,bb
LTSTI,bb

Description
Set
Add
Subtract
Multiply
Divide
Compare
Unsigned Divide
Unsigned Compare
Test Bits

Loading Long Integer Values
The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit long
integer values.

LWRITE,nn,b1,b2,b3,b4 Write 32-bit long integer value to reg[nn]
LWRITEA,b1,b2,b3,b4 Write 32-bit long integer value to reg[A]
LWRITEX,b1,b2,b3,b4 Write 32-bit long integer value to reg[X]
LWRITE0,b1,b2,b3,b4 Write 32-bit long integer value to reg[0]
ATOL,aa...00 Convert ASCII string to long integer value and store in reg[0]
LONGBYTE,bb Convert signed byte to long integer and store in reg[0]
LONGUBYTE,bb Convert unsigned byte to long integer and store in reg[0]
LONGWORD,b1,b2 Convert signed 16-bit value to long integer and store in reg[0]
LONGUWORD,b1,b2 Convert unsigned 16-bit value to long integer and store in reg[0]

Reading Long Integer Values
The following instructions are used to read long integer values from the uM-FPU.

LREAD,nn [b1,b2,b3,b4] returns 32-bit long integer value from reg[nn]
LREADA [b1,b2,b3,b4] returns 32-bit long integer value from reg[A]
LREADX [b1,b2,b3,b4] returns 32-bit long integer value from reg[X]
LREAD0 [b1,b2,b3,b4] returns 32-bit long integer value from reg[0]
LREADBYTE [b1] returns 8-bit byte from reg[A]
LREADWORD [b1,b2] returns 16-bit value from reg[A]
LTOA,bb convert long integer to ASCII string (use READSTR to read string)

Micromega Corporation 6 uM-FPU V3 Instruction Reference

Micromega Corporation 7 uM-FPU V3 Instruction Reference

Micromega Corporation 8 uM-FPU V3 Instruction Reference

Additional Long Integer Instructions

LSTATUS,nn
LSTATUSA
LCMP2,nn,mm
LUCMP2,nn,mm

LNEG
LABS
LINC,nn
LDEC,nn

LNOT
LAND,nn
LOR,nn
LXOR,nn

LSHIFT,nn
LMIN,nn
LMAX,nn
LONGCON, bb

Micromega Corporation 7 uM-FPU V3 Instruction Reference

Micromega Corporation 8 uM-FPU V3 Instruction Reference

Micromega Corporation 9 uM-FPU V3 Instruction Reference

RESET
NOP
SELECTA,nn
SELECTX,nn
CLR,nn
CLRA
CLRX
COPY,mm,nn
COPY0,nn

COPYI,bb,nn
COPYA,nn
COPYX,nn
LOAD,nn
LOADA
LOADX
ALOADX
XSAVE,nn
XSAVEA

LOADIND,nn
SAVEIND,nn
INDA
INDX
SWAP,nn,mm
SWAPA,nn
LEFT
RIGHT
SETOUT,bb

SYNC
READSTATUS
READSTR
VERSION
IEEEMODE
PICMODE
CHECKSUM
READVAR,bb

Special Purpose Instructions

Stored Function Instructions
FCALL,fn Call Flash user-defined function
EECALL,fn Call EPROM user-defined function
RET Return from user-defined functionBRA,bb Unconditional branch
inside user-defined function
BRA,cc,bb Conditional branch inside user-defined function
JMP,b1,b2 Unconditional jump inside user-defined function
JMP,cc,b1,b2 Conditional jump inside user-defined function
GOTO,nn Computed goto
TABLE,tc,t0..tn Table lookup
FTABLE,cc,tc,t0..tn Floating point reverse table lookup
LTABLE,cc,tc,t0..tn Long integer reverse table lookup
POLY,tc,t0..tn Nth order polynomial

Analog to Digital Conversion Instructions
ADCMODE,bb Select A/D trigger mode
ADCTRIG Manual A/D trigger
ADCSCALE,bb Set A/D floating point scale factor
ADCLONG,bb Get raw long integer A/D reading
ADCLOAD,bb Get scaled floating point A/D reading
ADCWAIT Wait for A/D conversion to complete

Timer Instructions
TIMESET Set timers
TIMELONG Get time in seconds
TICKLONG Get time in microseconds

General Purpose Instructions

Micromega Corporation 8 uM-FPU V3 Instruction Reference

Micromega Corporation 9 uM-FPU V3 Instruction Reference

Micromega Corporation 10 uM-FPU V3 Instruction Reference

EEPROM Instructions
EESAVE,mm,nn Save reg[nn] value to EEPROM
EESAVEA,nn Save reg[A] to EEPROM
EELOAD,mm,nn Load reg[nn] with EEPROM value
EELOADA,nn Load reg[A] with EEPROM value
EEWRITE,nn,bc,b1..bn Write byte string to EEPROM

External Input Instructions
EXTSET Set external input counter
EXTLONG Get external input counter
EXTWAIT Wait for next external input pulse

String Manipulation Instructions
STRSET,aa..00 Set string buffer
STRSEL,bb, bb Select string buffer selection point
STRINS,aa..00 Insert substring at
STRCMP,aa..00 Compare string to current selection
STRFIND,aa..00 Find string in string buffer
STRFCHR,aa..00 Set field delimiters
STRFIELD,bb Find field
STRTOF Convert string selection to floating point
STRTOL Convert string selection to long integer
READSEL Read string selection

Debugging Instructions
BREAK Debug breakpoint
TRACEOFF Turn debug trace off
TRACEON Turn debug trace on
TRACESTR,aa..00 Display string in debug trace
TRACEREG,nn Display contents of register in debug trace

Micromega Corporation 9 uM-FPU V3 Instruction Reference

Micromega Corporation 10 uM-FPU V3 Instruction Reference

Micromega Corporation 11 uM-FPU V3 Instruction Reference

uM-FPU V3 Instruction Reference

ACOS Arc Cosine
Opcode: 4B

Description: reg[A] = acos(reg[A])
Calculates the arc cosine of an angle in the range 0.0 through pi. The initial value is contained in
register A, and the result is returned in register A.

Special case: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN

ADCLOAD Load scaled A/D value
Opcode: D5 nn where: nn is the A/D channel number

Description: reg[0] = float(ADCchannel[nn]) * ADCscale[nn])
Load register 0 with the reading from channel nn of the A/D converter. The 12-bit value is
converted to floating point, multiplied by a scale value, and stored in register 0.

ADCLONG Load raw A/D value
Opcode: D4 nn where: nn is the A/D channel number

Description: reg[0] = ADCchannel[nn]
Load register 0 with the reading from channel nn of the A/D converter. The 12-bit value is
converted to a long integer and stored in register 0.

ADCMODE Set A/D trigger mode
Opcode: D1 nn where: nn is the trigger mode

Description: Set the trigger mode of the A/D converter. The value nn is interpreted as follows:

Trigger

7 6 5 4 3 2 1 0Bit

Repeat

Bit 7-4 Trigger Type
0 - disable A/D conversions
1 - manual trigger
2 - external input trigger
3 - timer trigger, the value in register 0 specifies the period in microseconds.

Bit 3-0 Repeat Count
The number of samples taken for each trigger is equal to the repeat count plus one.
(e.g. a value of 0 will result in one sample per trigger)

ADCSCALE Set scale multiplier for A/D
Opcode: D3 nn where: nn is the A/D channel number

Description: ADCscale[nn] = reg[0]
Set the scale value for channel nn to the floating point value in register 0. The scale value for all
channels is set to 1.0 at device reset or when the ADCMODE mode is set to disable A/D
conversions.

Micromega Corporation 10 uM-FPU V3 Instruction Reference

Micromega Corporation 11 uM-FPU V3 Instruction Reference

Micromega Corporation 12 uM-FPU V3 Instruction Reference

ADCTRIG Trigger an A/D conversion
Opcode: D2

Description: Trigger an A/D conversion. If a conversion is already in progress the trigger is ignored. This is
normally used only when the ADCMODE is set for manual trigger.

ADCWAIT Wait for next A/D sample
Opcode: D6

Description: Wait until the next A/D sample is ready. When ADCMODE is set for manual trigger, this
instruction can be used to wait until the conversion started by the last ADCTRIG is done.
ADCLONG and ADCLOAD automatically wait until the next sample is ready. If the ADCMODE
is set for timer trigger or external input trigger, this instruction will wait until the next full
conversion is completed.

ALOADX Load register A from register X
Opcode: 0D nn where: nn is a register number

Description: reg[A] = reg[X] , X = X + 1
Set register A to the value of register X, and increment X to select the next register in sequence.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

ASIN Arc Sine
Opcode: 4A

Description: reg[A] = asin(reg[A])
Calculates the arc sine of an angle in the range of –pi/2 through pi/2. The initial value is contained
in register A, and the result in returned in register A.

Special cases: • if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN
• if reg[A] is 0.0, then the result is a 0.0
• if reg[A] is –0.0, then the result is –0.0

ATAN Arc Tangent
Opcode: 4C

Description: reg[A] = atan(reg[A])
Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is
contained in register A, and the result in returned in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is 0.0, then the result is a 0.0
• if reg[A] is –0.0, then the result is –0.0

ATAN2 Arc Tangent (two arguments)
Opcode: 4D nn where: nn is a register number

Description: reg[A] = atan(reg[A] / reg[nn])
Calculates the arc tangent of an angle in the range of –pi/2 through pi/2. The initial value is
determined by dividing the value in register A by the value in register nn, and the result in returned

Micromega Corporation 11 uM-FPU V3 Instruction Reference

Micromega Corporation 12 uM-FPU V3 Instruction Reference

Micromega Corporation 13 uM-FPU V3 Instruction Reference

in register A. This instruction is used to convert rectangular coordinates (reg[A], reg[nn]) to polar
coordinates (r, theta). The value of theta is returned in register A.

Special cases: • if reg[A] or reg[nn] is NaN, then the result is NaN
• if reg[A] is 0.0 and reg[nn] > 0, then the result is 0.0
• if reg[A] > 0 and finite, and reg[nn] is +inf, then the result is 0.0
• if reg[A] is –0.0 and reg[nn] > 0, then the result is –0.0
• if reg[A] < 0 and finite, and reg[nn] is +inf, then the result is –0.0
• if reg[A] is 0.0 and reg[nn] < 0, then the result is pi
• if reg[A] > 0 and finite, and reg[nn] is –inf, then the result is pi
• if reg[A] is –0.0, and reg[nn] < 0, then the result is –pi
• if reg[A] < 0 and finite, and reg[nn] is –inf, then the result is –pi
• if reg[A] > 0, and reg[nn] is 0.0 or –0.0, then the result is pi/2
• if reg[A] is +inf, and reg[nn] is finite, then the result is pi/2
• if reg[A] < 0, and reg[nn] is 0.0 or –0.0, then the result is –pi/2
• if reg[A] is –inf, and reg[nn] is finite, then the result is –pi/2
• if reg[A] is +inf, and reg[nn] is +inf, then the result is pi/4
• if reg[A] is +inf, and reg[nn] is –inf, then the result is 3*pi/4
• if reg[A] is –inf, and reg[nn] is +inf, then the result is –pi/4
• if reg[A] is –inf, and reg[nn] is –inf, then the result is –3*pi/4

ATOF Convert ASCII string to floating point
Opcode: 1E aa...00 where: aa...00 is a zero-terminated ASCII string

Description: Converts a zero terminated ASCII string to a 32-bit floating point number and stores the result in
register 0. The string to convert is sent immediately following the opcode. The string can be
normal number format (e.g. 1.56, -0.5) or exponential format (e.g. 10E6). Conversion will stop at
the first invalid character, but data will continue to be read until a zero terminator is encountered.

Example:
4C 32 2E 35 34 00 (string 2.54) stores the value 2.54 in register 0
4C 31 46 33 00 (string 1E3) stores the value 1000.0 in register 0

ATOL Convert ASCII string to long integer
Opcode: 9A aa...00 where: aa...00 is a zero-terminated ASCII string

Description: Converts a zero terminated ASCII string to a 32-bit long integer and stores the result in register 0.
The string to convert is sent immediately following the opcode. Conversion will stop at the first
invalid character, but data will continue to be read until a zero terminator is encountered.

Example:
9D 35 30 30 30 30 30 00 (string 500000) stores the value 500000 in register 0
9D 35 45 00 (string -5) stores the value -5 in register 0

BRA Unconditional branch
Opcode: 81 bb where: bb is the relative address in bytes (-128 to +127)

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
Function execution will continue at the address determined by adding the signed byte value to the
address of the byte immediately following the instruction. It has a range of -128 to 127 bytes. The
JMP instruction can be used for addresses that are outside this range. If the new address is outside
the address range of the function, a function return occurs.

Micromega Corporation 12 uM-FPU V3 Instruction Reference

Micromega Corporation 13 uM-FPU V3 Instruction Reference

Micromega Corporation 14 uM-FPU V3 Instruction Reference

BRA Conditional branch
Opcode: 82 cc, bb where: cc is the test condition

bb is the relative address in bytes (-128 to +127)

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If
the test condition is true, then function execution will continue at the address determined by
adding the signed byte value to the address of the byte immediately following the instruction. It
has a range of -128 to 127 bytes. The JMP instruction can be used for addresses that are outside
this range. If the new address is outside the address range of the function, a function return occurs.

BREAK Debug breakpoint
Opcode: F7

Description: Used in conjunction with the built-in debugger. If the debugger is enabled, a breakpoint occurs and
the debug monitor is entered. If debug mode is not selected, this instruction is ignored.

CEIL Ceiling
Opcode: 52

Description: reg[A] = ceil(reg[A])
Calculates the floating point value equal to the nearest integer that is greater than or equal to the
floating point value in register A. The result is stored in register A.

Special cases: • if is NaN, then the result is NaN
• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0
• if reg[A] is less than zero but greater than –1.0, then the result is –0.0

CHECKSUM Calculate checksum for uM-FPU code
Opcode: F6

Description: A checksum is calculated for the uM-FPU code and stored in register 0. This is used as a
diagnostic test for confirming the state of a uM-FPU chip.

CLR Clear register
Opcode: 03 nn where: nn is a register number

Description: reg[nn] = 0
Set the register value to zero.

CLR0 Clear register 0
Opcode: 06

Description: reg[0] = 0
Set the value of register 0 to zero.

CLRA Clear register A
Opcode: 04

Description: reg[A] = 0
Set the value of register A to zero.

Micromega Corporation 13 uM-FPU V3 Instruction Reference

Micromega Corporation 14 uM-FPU V3 Instruction Reference

Micromega Corporation 15 uM-FPU V3 Instruction Reference

CLRX Clear register X
Opcode: 05

Description: reg[X] = 0, X = X + 1
Set the value of register A to zero, and increment X to select the next register in sequence.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

COPY Copy registers
Opcode: 07 mm nn where: mm and nn are register numbers

Description: reg[nn] = reg[mm]
The value of register nn is copied to register mm.

COPYA Copy register A
Opcode: 08 nn where: nn is a register number

Description: reg[nn] = reg[A]
Set register nn to the value of register A.

COPY0 Copy register 0
Opcode: 10 nn where: nn is a register number

Description: reg[nn] = reg[0]
Set register nn to the value of register 0.

COPYI Copy Immediate value
Opcode: 11 bb nn where: bb is an unsigned byte value (0 to 255)

nn is a register number

Description: reg[nn] = long(unsigned bb)
The 8-bit unsigned value is converted to a long integer and stored in register nn.

COPYX Copy register X
Opcode: 09 nn where: nn is a register number

Description: reg[nn] = reg[X], X = X + 1
Set register nn to the value of register X, and increment X to select the next register in sequence.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

COS Cosine
Opcode: 48

Description: reg[A] = cosine(reg[A])
Calculates the cosine of the angle (in radians) in register A and stored the result in register A.

Special case: • if reg[A] is NaN or an infinity, then the result is NaN

DEGREES Convert radians to degrees
Opcode: 4E

Micromega Corporation 14 uM-FPU V3 Instruction Reference

Micromega Corporation 15 uM-FPU V3 Instruction Reference

Micromega Corporation 16 uM-FPU V3 Instruction Reference

Description: The floating point value in register A is converted from radians to degrees and the result is stored
in register A.

Special case: • if reg[A] is NaN, then the result is NaN

EECALL Call EEPROM memory user defined function
Opcode: 7F fn where: fn is the function number

Description: The user defined function nn, stored in EEPROM memory, is executed. Up to eight levels of
nesting is supported for function calls. The EEPROM functions can be stored at run-time using
the EEWRITE instruction.

Special Cases: If the selected user function is not defined, register 0 is set to NaN, and execution continues.

EELOAD Load register nn with value from EEPROM
Opcode: DC nn, ee where: nn is a register number

ee is the EEPROM address slot.

Description: reg[nn] = EEPROM[ee]
Register nn is set to the value in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).

EELOADA Load register A with value from EEPROM
Opcode: DD ee where: ee is the EEPROM address slot

Description: reg[A] = EEPROM[ee]
Register A is set to the value in EEPROM at the address slot specified by ee . EEPROM address
slots are 4 bytes in length (32-bits).

EESAVE Save register nn to EEPROM
Opcode: DA nn ee where: nn is a register number

ee is the EEPROM address slot

Description: EEPROM[mm] = reg[nn]
The value in register A is stored in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).

EESAVEA Save register A to EEPROM
Opcode: DB ee where: ee is the EEPROM address slot

Description: EEPROM[nn] = reg[A]
The value in register A is stored in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).

EEWRITE Write bytes to EEPROM
Opcode: DE ee bc bb...bb

where: ee is the EEPROM address slot
bc is the number of bytes
bb...bb is a string of bytes

Description: reg[0] = EEPROM[ee]
The number of bytes specified by bc are copied to the EEPROM starting at address slot ee.

Micromega Corporation 15 uM-FPU V3 Instruction Reference

Micromega Corporation 16 uM-FPU V3 Instruction Reference

Micromega Corporation 17 uM-FPU V3 Instruction Reference

Address slots are 4 bytes in length (32-bits). Consecutive address slots are used to store the
specified number of bytes. This instruction can be used to store multiple values to the EEPROM
address slots or to dynamically store a user-defined function.

EXP The value e raised to a power
Opcode: 45

Description: reg[A] = exp(reg[A])
Calculates the value of e (2.7182818) raised to the power of the floating point value in register A.
The result is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity or greater than 88, then the result is +infinity
• if reg[A] is –infinity or less than -88, then the result is 0.0

EXP10 The value 10 raised to a power
Opcode: 46

Description: reg[A] = exp10(reg[A])
Calculates the value of 10 raised to the power of the floating point value in register A. The result is
stored in A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity or greater than 38, then the result is +infinity
• if reg[A] is –infinity or less than -38, then the result is 0.0

EXTLONG Load value of external input counter
Opcode: E1

Description: reg[0] = external input count
Load register 0 with the external input count.

EXTSET Set value of external input counter
Opcode: E0

Description: external input count = reg[0]
The external input count is set to the value in register 0.

EXTWAIT Wait for next external input pulse
Opcode: E2

Description: Wait for the next external input to occur.

FABS Floating point absolute value
Opcode: 3F

Description: reg[A] = | reg[A] |
Sets the floating value in register A to the absolute value.

Special case: • if reg[A] is NaN, then the result is NaN

Micromega Corporation 16 uM-FPU V3 Instruction Reference

Micromega Corporation 17 uM-FPU V3 Instruction Reference

Micromega Corporation 18 uM-FPU V3 Instruction Reference

FADD Floating point add
Opcode: 21 nn where: nn is a register number

Description: reg[A] = reg[A] + reg[nn]
The floating point value in register nn is added to the floating point value in register A and the
result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if one value is +infinity and the other is –infinity, then the result is NaN
• if one value is +infinity and the other is not –infinity, then the result is +infinity
• if one value is -infinity and the other is not +infinity, then the result is -infinity

FADD0 Floating point add register 0
Opcode: 2A

Description: reg[A] = reg[A] + reg[0]
The floating point value in register 0 is added to the floating point value in register A and the result
is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if one value is +infinity and the other is –infinity, then the result is NaN
• if one value is +infinity and the other is not –infinity, then the result is +infinity
• if one value is -infinity and the other is not +infinity, then the result is -infinity

FADDI Floating point add immediate value
Opcode: 33 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] + float(bb)
The signed byte value is converted to floating point and added to the value in register A and the
result is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

FCALL Call Flash memory user defined function
Opcode: 7E fn where: fn is the function number

Description: The user defined function nn, stored in Flash memory, is executed. Up to eight levels of nesting is
supported for function calls. The uM-FPU IDE provides support for programming user defined
functions in Flash memory using the serial debug monitor (see datasheet).

Special Cases: If the selected user function is not defined, register 0 is set to NaN, and execution continues.

FCMP Floating point compare
Opcode: 28 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])
Compares the floating point value in register A with the value in register nn and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

Micromega Corporation 17 uM-FPU V3 Instruction Reference

Micromega Corporation 18 uM-FPU V3 Instruction Reference

Micromega Corporation 19 uM-FPU V3 Instruction Reference

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

FCMP0 Floating point compare register 0
Opcode: 31

Description: status = compare(reg[A] - reg[0])
Compares the floating point value in register A with the value in register 0 and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[0]
Bit 0 Zero Set if reg[A] = reg[0]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0]

FCMP2 Floating point compare
Opcode: 3D nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])
Compares the floating point value in register nn with the value in register mm and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

FCMPI Floating point compare immediate value
Opcode: 3A bb where: bb is a signed byte value (-128 to 127)

Description: status = compare(reg[A] - float(bb))
The signed byte value is converted to floating point and compared to the floating point value in
register A. The status byte can be read with the READSTATUS instruction. It is set as follows:

 1 - - - - S

7 6 5 4 3 2 1 0Bit

N Z
Bit 2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < float(bb)
Bit 0 Zero Set if reg[A] = float(bb)

If neither Bit 0 or Bit 1 is set, reg[A] > float(bb)

FCNV Floating point conversion
Opcode: 56 bb where: bb is an unsigned byte value (0 to 255)

Description: reg[A] = the converted value of reg[A]

Micromega Corporation 18 uM-FPU V3 Instruction Reference

Micromega Corporation 19 uM-FPU V3 Instruction Reference

Micromega Corporation 20 uM-FPU V3 Instruction Reference

Convert the value in register A using the conversion specified by the byte bb and store the fresult
in register A. The conversions are as follows:
0 Fahrenheit to Celsius
1 Celsius to Fahrenheit
2 inches to millimeters
3 millimeters to inches
4 inches to centimeters
5 centimeters to inches
6 inches to meters
7 meters to inches
8 feet to meters
9 meters to feet
10 yards to meters
11 meters to yards
12 miles to kilometers
13 kilometers to miles
14 nautical miles to meters
15 meters to nautical miles
16 acres to meters2

17 meters 2 to acres
18 ounces to grams
19 grams to ounces
20 pounds to kilograms
21 kilograms to pounds
22 US gallons to liters
23 liters to US gallons
24 UK gallons to liters
25 liters to UK gallons
26 US fluid ounces to milliliters
27 milliliters to US fluid ounces
28 UK fluid ounces to milliliters
29 milliliters to UK fluid ounces
30 calories to Joules
31 Joules to calories
32 horsepower to watts
33 watts to horsepower
34 atmospheres to kilopascals
35 kilopascals to atmospheres
36 mmHg to kilopascals
37 kilopascals to mmHg
38 degrees to radians
39 radians to degrees

Special cases: • if the byte value bb is greater than 39, the value of register A is unchanged.

FDIV Floating point divide
Opcode: 25 nn where: nn is a register number

Description: reg[A] = reg[A] / reg[nn]
The floating point value in register A is divided by the floating point value in register nn and the

Micromega Corporation 19 uM-FPU V3 Instruction Reference

Micromega Corporation 20 uM-FPU V3 Instruction Reference

Micromega Corporation 21 uM-FPU V3 Instruction Reference

result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[nn] is zero and reg[A] is not zero, then the result is infinity
• if reg[nn] is infinity, then the result is zero

FDIV0 Floating point divide by register 0
Opcode: 2E

Description: reg[A] = reg[A] / reg[0]
The floating point value in register A is divided by the floating point value in register 0 and the
result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[nn] is zero and reg[A] is not zero, then the result is infinity
• if reg[nn] is infinity, then the result is zero

FDIVI Floating point divide by immediate value
Opcode: 37 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] / float(bb)
The signed byte value is converted to floating point and the value in register A is divided by the
converted value and the result is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if both values are zero, then the result is NaN
• if the value bb is zero and reg[A] is not zero, then the result is infinity

FDIVR Floating point divide (reversed)
Opcode: 26 nn where: nn is a register number

Description: reg[A] = reg[nn] / reg[A]
The floating point value in register nn is divided by the floating point value in register A and the
result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN
• if reg[A] is zero and reg[nn] is not zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

FDIVR0 Floating point divide register 0 (reversed)
Opcode: 2F

Description: reg[A] = reg[0] / reg[A]
The floating point value in register 0 is divided by the floating point value in register A and the
result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are zero or both values are infinity, then the result is NaN

Micromega Corporation 20 uM-FPU V3 Instruction Reference

Micromega Corporation 21 uM-FPU V3 Instruction Reference

Micromega Corporation 22 uM-FPU V3 Instruction Reference

• if reg[A] is zero and reg[0] is not zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

FDIVRI Floating point divide by immediate value (reversed)
Opcode: 38 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float(bb) / reg[A]
The signed byte value is converted to floating point and divided by the value in register A. The
result is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if both values are zero, then the result is NaN
• if the value reg[A] is zero and float(bb) is not zero, then the result is infinity

FFT Fast Fourier Transform
Opcode: 6F bb where: bb specifies the type of operation

Description: The type of operation is specified as follows:
0 first stage
1 next stage
2 next level
3 next block

+4 pre-processing bit reverse sort
+8 pre-processing for inverse FFT

+16 post-processing for inverse FFT

The data for the FFT instruction is stored in matrix A as a Nx2 matrix, where N must be a power
of two. The data points are specified as complex numbers, with the real part stored in the first
column and the imaginary part stored in the second column. If all data points can be stored in the
matrix (maximum of 64 points if all 128 registers are used), the Fast Fourier Transform can be
calculated with a single instruction. If more data points are required than will fit in the matrix, the
calculation must be done in blocks. The algorithm iteratively writes the next block of data,
executes the FFT instruction for the appropriate stage of the FFT calculation, and reads the data
back to the microcontroller. This proceeds in stages until all data points have been processed. See
application notes for more details.

FINV Floating point inverse
Opcode: 40

Description: reg[A] = 1 / reg[A]
The inverse of the floating point value in register A is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is zero, then the result is infinity
• if reg[A] is infinity, then the result is zero

FIX Convert floating point to long integer
Opcode: 61

Description: reg[A] = fix(reg[A])

Micromega Corporation 21 uM-FPU V3 Instruction Reference

Micromega Corporation 22 uM-FPU V3 Instruction Reference

Micromega Corporation 23 uM-FPU V3 Instruction Reference

Converts the floating point value in register A to a long integer value.

Special cases: • if reg[A] is NaN, then the result is zero
• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $80000000)

FIXR Convert floating point to long integer with rounding
Opcode: 62

Description: reg[A] = fix(round(reg[A]))
Converts the floating point value in register A to a long integer value with rounding.

Special cases: • if reg[A] is NaN, then the result is zero
• if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)
• if reg[A] is –infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $80000000)

FLOAT Convert long integer to floating point
Opcode: 60

Description: reg[A] = float(reg[A])
Converts the long integer value in register A to a floating point value.

FLOOR Floor
Opcode: 51

Description: reg[A] = floor(reg[A])
Calculates the floating point value equal to the nearest integer that is less than or equal to the
floating point value in register A. The result is stored in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
• if reg[A] is 0.0 or –0.0, then the result is 0.0 or –0.0

FMAC Multiply and add to accumulator
Opcode: 57 nn mm where: nn and mm are a register numbers

Description: reg[A] = reg[A] + (reg[nn] * reg[mm])
The floating point value in register nn is multiplied by the value in register mm and the result is
added to register A.

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

FMAX Floating point maximum
Opcode: 55 nn where: nn is a register number

Description: reg[A] = max(reg[A], reg[nn])
The maximum floating point value of registers A and register nn is stored in register A.

Micromega Corporation 22 uM-FPU V3 Instruction Reference

Micromega Corporation 23 uM-FPU V3 Instruction Reference

Micromega Corporation 24 uM-FPU V3 Instruction Reference

Special cases: • if either value is NaN, then the result is NaN

FMIN Floating point minimum
Opcode: 54 nn where: nn is a register number

Description: reg[A] = min(reg[A], reg[nn])
The minimum floating point value of registers A and register nn is stored in register A.

Special cases: • if either value is NaN, then the result is NaN

FMOD Floating point remainder
Opcode: 50 nn where: nn is a register number

Description: reg[A] = remainder of reg[A] / (reg[nn]
The floating point remainder of the floating point value in register A divided by register nn is
stored in register A.

FMSC Multiply and subtract from accumulator
Opcode: 58 nn mm where: nn and mm are a register numbers

Description: reg[A] = reg[A] - (reg[nn] * reg[mm])
The floating point value in register nn is multiplied by the value in register mm and the result is
subtracted from register A.

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

FMUL Floating point multiply
Opcode: 24 nn where: nn is a register number

Description: reg[A] = reg[A] * reg[nn]
The floating point value in register A is multiplied by the value in register nn and the result is
stored in register A.

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

FMUL0 Floating point multiply by register 0
Opcode: 2D

Description: reg[A] = reg[A] * reg[0]
The floating point value in register 0 is multiplied by the value in register nn and the result is
stored in register 0.

Special cases: • if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
• if either values is infinity and the other is nonzero, then the result is infinity

FMULI Floating point multiply by immediate value
Opcode: 36 bb where: bb is a signed byte value (-128 to 127)

Micromega Corporation 23 uM-FPU V3 Instruction Reference

Micromega Corporation 24 uM-FPU V3 Instruction Reference

Micromega Corporation 25 uM-FPU V3 Instruction Reference

Description: reg[A] = reg[A] * float[bb]
The signed byte value is converted to floating point and the value in register A is multiplied by the
converted value and the result is stored in reg[A].

Special cases: • if reg[A] is NaN, then the result is NaN
• if the signed byte is zero and reg[A] is infinity, then the result is NaN

FNEG Floating point negate
Opcode: 3E

Description: reg[A] = -reg[A]
The negative of the floating point value in register A is stored in register A.

Special case: • if the value is NaN, then the result is NaN

FPOW Floating point power
Opcode: 27 nn where: nn is a register number

Description: reg[A] = reg[A] ** reg[nn]
The floating point value in register A is raised to the power of the floating point value in register
nn and stored in register A.

Special cases: • if reg[nn] is 0.0 or –0.0, then the result is 1.0
• if reg[nn] is 1.0, then the result is the same as the A value
• if reg[nn] is NaN, then the result is Nan
• if reg[A] is NaN and reg[nn] is nonzero, then the result is NaN
• if | reg[A] | > 1 and reg[nn] is +infinite, then the result is +infinity
• if | reg[A] | < 1 and reg[nn] is -infinite, then the result is +infinity
• if | reg[A] | > 1 and reg[nn] is -infinite, then the result is 0.0
• if | reg[A] | < 1 and reg[nn] is +infinite, then the result is 0.0
• if | reg[A] | = 1 and reg[nn] is infinite, then the result is NaN
• if reg[A] is 0.0 and reg[nn] > 0, then the result is 0.0
• if reg[A] is +infinity and reg[nn] < 0, then the result is 0.0
• if reg[A] is 0.0 and reg[nn] < 0, then the result is +infinity
• if reg[A] is +infinity and reg[nn] > 0, then the result is +infinity
• if reg[A] is -0.0 and reg[nn] > 0 but not a finite odd integer, then the result is 0.0
• if the reg[A] is -infinity and reg[nn] < 0 but not a finite odd integer, then the result is 0.0
• if reg[A] is -0.0 and the reg[nn] is a positive finite odd integer, then the result is –0.0
• if reg[A] is -infinity and reg[nn] is a negative finite odd integer, then the result is –0.0
• if reg[A] is -0.0 and reg[nn] < 0 but not a finite odd integer, then the result is +infinity
• if reg[A] is -infinity and reg[nn] > 0 but not a finite odd integer,
 then the result is +infinity
• if reg[A] is -0.0 and reg[nn] is a negative finite odd integer, then the result is –infinity
• if reg[A] is -infinity and reg[nn] is a positive finite odd integer,
 then the result is –infinity
• if reg[A] < 0 and reg[nn] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[nn]
• if reg[A] < 0 and reg[nn] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[nn]
• if reg[A] < 0 and finite and reg[nn] is finite and not an integer, then the result is NaN

Micromega Corporation 24 uM-FPU V3 Instruction Reference

Micromega Corporation 25 uM-FPU V3 Instruction Reference

Micromega Corporation 26 uM-FPU V3 Instruction Reference

FPOW0 Floating point power by register 0
Opcode: 30 nn where: nn is a register number

Description: reg[A] = reg[A] ** reg[0]
The floating point value in register A is raised to the power of the floating point value in register 0
and stored in register A.

Special cases: • if reg[0] is 0.0 or –0.0, then the result is 1.0
• if reg[0] is 1.0, then the result is the same as the A value
• if reg[0] is NaN, then the result is Nan
• if reg[A] is NaN and reg[0] is nonzero, then the result is NaN
• if | reg[A] | > 1 and reg[0] is +infinite, then the result is +infinity
• if | reg[A] | < 1 and reg[0] is -infinite, then the result is +infinity
• if | reg[A] | > 1 and reg[0] is -infinite, then the result is 0.0
• if | reg[A] | < 1 and reg[0] is +infinite, then the result is 0.0
• if | reg[A] | = 1 and reg[0] is infinite, then the result is NaN
• if reg[A] is 0.0 and reg[0] > 0, then the result is 0.0
• if reg[A] is +infinity and reg[0] < 0, then the result is 0.0
• if reg[A] is 0.0 and reg[0] < 0, then the result is +infinity
• if reg[A] is +infinity and reg[0] > 0, then the result is +infinity
• if reg[A] is -0.0 and reg[0] > 0 but not a finite odd integer, then the result is 0.0
• if the reg[A] is -infinity and reg[0] < 0 but not a finite odd integer, then the result is 0.0
• if reg[A] is -0.0 and the reg[0] is a positive finite odd integer, then the result is –0.0
• if reg[A] is -infinity and reg[0] is a negative finite odd integer, then the result is –0.0
• if reg[A] is -0.0 and reg[0] < 0 but not a finite odd integer, then the result is +infinity
• if reg[A] is -infinity and reg[0] > 0 but not a finite odd integer,
 then the result is +infinity
• if reg[A] is -0.0 and reg[0] is a negative finite odd integer, then the result is –infinity
• if reg[A] is -infinity and reg[0] is a positive finite odd integer,
 then the result is –infinity
• if reg[A] < 0 and reg[0] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[0]
• if reg[A] < 0 and reg[0] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[0]
• if reg[A] < 0 and finite and reg[0] is finite and not an integer, then the result is NaN

FPOWI Floating point power by immediate value
Opcode: 39 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] ** float[bb]
The signed byte value is converted to floating point and the value in register A is raised to the
power of the converted value. The result is stored in register A.

Special cases: • if bb is 0, then the result is 1.0
• if bb is 1, then the result is the same as the A value
• if reg[A] is NaN and bb is nonzero, then the result is NaN
• if reg[A] is 0.0 and bb > 0, then the result is 0.0
• if reg[A] is +infinity and bb < 0, then the result is 0.0
• if reg[A] is 0.0 and bb < 0, then the result is +infinity
• if reg[A] is +infinity and bb > 0, then the result is +infinity

Micromega Corporation 25 uM-FPU V3 Instruction Reference

Micromega Corporation 26 uM-FPU V3 Instruction Reference

Micromega Corporation 27 uM-FPU V3 Instruction Reference

• if reg[A] is -0.0 and bb > 0 but not an odd integer, then the result is 0.0
• if the reg[A] is -infinity and bb < 0 but not an odd integer, then the result is 0.0
• if reg[A] is -0.0 and bb is a positive odd integer, then the result is –0.0
• if reg[A] is -infinity and bb is a negative odd integer, then the result is –0.0
• if reg[A] is -0.0 and bb < 0 but not an odd integer, then the result is +infinity
• if reg[A] is -infinity and bb > 0 but not an odd integer, then the result is +infinity
• if reg[A] is -0.0 and bb is a negative odd integer, then the result is –infinity
• if reg[A] is -infinity and bb is a positive odd integer, then the result is –infinity
• if reg[A] < 0 and bb is an even integer,
then the result is equal to | reg[A] | to the power of bb
• if reg[A] < 0 and bb is an odd integer,
then the result is equal to the negative of | reg[A] | to the power of bb

FRAC Get fractional part of floating point value
Opcode: 63

Description: Register A is loaded with the fractional part the floating point value in register A. The sign of the
fraction is the same as the sign of the original value.

Special cases: • if register A is NaN or infinity, then the result is NaN

FREAD Read floating point value
Opcode: 1A nn where: nn is a register number
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[nn]
The floating point value of register nn is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREAD0 Read floating point value from register 0
Opcode: 1D
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[0]
The floating point value from register 0 is returned. The four bytes of the 32-bit floating point
value must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREADA Read floating point value from register A
Opcode: 1B
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[A]
The floating point value of register A is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREADX Read floating point value from register X

Micromega Corporation 26 uM-FPU V3 Instruction Reference

Micromega Corporation 27 uM-FPU V3 Instruction Reference

Micromega Corporation 28 uM-FPU V3 Instruction Reference

Opcode: 1C
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[X], X = X + 1
The floating point value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit floating point value must be read immediately following this instruction. If
the PIC data format has been selected (using the PICMODE instruction), the IEEE 754 format
floating point value is converted to PIC format before being sent.

FSET Set register A
Opcode: 20 nn where: nn is a register number

Description: reg[A] = reg[nn]
Set register A to the value of register nn.

FSET0 Set register A from register 0
Opcode: 29
Description: reg[A] = reg[0]

Set register A to the value of register 0.

FSETI Set register from immediate value
Opcode: 32 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float(bb)
The signed byte value is converted to floating point and stored in register A.

FSPLIT Split integer and fractional portions of floating point value
Opcode: 64

Description: reg[A] = integer(reg[A]), reg[0] = fraction(reg[A])
The integer portion of the value in register A is stored in register A, and the fractional portion of
the value in register A is stored in register 0. Both values are stored as floating point values.

FSTATUS Get floating point status
Opcode: 3B nn where: nn is a register number

Description: status = status(reg[nn])
Set the internal status byte to the floating point status of the value in register nn. The status byte
can be read with the READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z

Bit 3 Infinity Set if the value is an infinity
Bit 2 Not-a-Number Set if the value is not a valid number
Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

FSTATUSA Get floating point status of register A
Opcode: 3C

Description: status = status(reg[A])

Micromega Corporation 27 uM-FPU V3 Instruction Reference

Micromega Corporation 28 uM-FPU V3 Instruction Reference

Micromega Corporation 29 uM-FPU V3 Instruction Reference

Set the internal status byte to the floating point status of the value in register A. The status byte can
be read with the READSTATUS instruction. It is set as follows:

1 - - - I S

7 6 5 4 3 2 1 0Bit

N Z
Bit 3 Infinity Set if the value is an infinity
Bit 2 Not-a-Number Set if the value is not a valid number
Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

FSUB Floating point subtract
Opcode: 22 nn where: nn is a register number

Description: reg[A] = reg[A] - reg[nn]
The floating point value in register nn is subtracted from the floating point value in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[A] is +infinity and reg[nn] is not +infinity, then the result is +infinity
• if reg[A] is -infinity and reg[nn] is not -infinity, then the result is -infinity
• if reg[A] is not an infinity and reg[nn] is an infinity, then the result is an infinity of the opposite
sign as reg[nn]

FSUB0 Floating point subtract register 0
Opcode: 2B

Description: reg[A] = reg[A] - reg[0]
The floating point value in register 0 is subtracted from the floating point value in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[A] is +infinity and reg[0] is not +infinity, then the result is +infinity
• if reg[A] is -infinity and reg[0] is not -infinity, then the result is -infinity
• if reg[A] is not an infinity and reg[0] is an infinity, then the result is an infinity of the opposite
sign as reg[0]

FSUBI Floating point subtract immediate value
Opcode: 34 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] - float[bb]
The signed byte value is converted to floating point and subtracted from the value in register A.

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

FSUBR Floating point subtract (reversed)
Opcode: 23 nn where: nn is a register number

Description: reg[A] = reg[nn] - reg[A]
The floating point value in register A is subtracted from the floating point value in register nn and
the result is stored in register A.

Micromega Corporation 28 uM-FPU V3 Instruction Reference

Micromega Corporation 29 uM-FPU V3 Instruction Reference

Micromega Corporation 30 uM-FPU V3 Instruction Reference

Special cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[nn] is +infinity and reg[A] is not +infinity, then the result is +infinity
• if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity
• if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite
sign as reg[A]

FSUBR0 Floating point subtract register 0 (reversed)
Opcode: 2C

Description: reg[A] = reg[0] - reg[A]
The floating point value in register A is subtracted from the floating point value in register 0 and
the result is stored in register A.

Special cases: • if either value is NaN, then the result is NaN
• if both values are infinity and the same sign, then the result is NaN
• if reg[nn] is +infinity and reg[0] is not +infinity, then the result is +infinity
• if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity
• if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite
sign as reg[A]

FSUBRI Floating point subtract immediate value (reversed)
Opcode: 35 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = float[bb] - reg[A]
The signed byte value is converted to floating point and the value in reg[A] is subtracted from it
and stored in reg[A].

Special cases: • if reg[A] is NaN, then the result is NaN
• if reg[A] is +infinity, then the result is +infinity
• if reg[A] is -infinity, then the result is -infinity

FTABLE Floating point reverse table lookup
Opcode: 85 cc tc t0...tn where: cc is the test condition

tc is the size of the table
T0...tn are 32-bit floating point values

Description: reg[0] = index of table entry that matches the test condition for reg[A]
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
performs a reverse table lookup on a floating point value. The value in register A is compared to
the values in the table using the test condition. The index number of the first table entry that
satisfied the test condition is returned in register 0. If no entry is found, register 0 is unchanged.

FTOA Convert floating point value to ASCII string
Opcode: 1F bb where: bb is the format byte

Description: The floating point value in register A is converted to an ASCII string and stored in the string
buffer. The byte immediately following the opcode is the format byte and determines the format
of the converted value.

Micromega Corporation 29 uM-FPU V3 Instruction Reference

Micromega Corporation 30 uM-FPU V3 Instruction Reference

Micromega Corporation 31 uM-FPU V3 Instruction Reference

If the format byte is zero, as many digits as necessary will be used to represent the number with up
to eight significant digits. Very large or very small numbers are represented in exponential
notation. The length of the displayed value is variable and can be from 3 to 12 characters in length.
The special cases of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of
the ASCII strings produced are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the
maximum length of the converted string, and the ones digit specifies the number of decimal points.
The maximum number of digits for the formatted conversion is 9, and the maximum number of
decimal points is 6. If the floating point value is too large for the format specified, asterisks will be
stored. If the number of decimal points is zero, no decimal point will be displayed. Examples of
the display format are as follows:

Value in register A Format byte Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) *.**
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

This instruction is normally followed by a READSTR instruction to read the string.

FWRITE Write floating point value
Opcode: 16 nn b1...b4 where: nn is register number

b1...b4 is floating point value (b1 is MSB)
Description: reg[nn] = 32-bit floating point value

The floating point value is stored in register nn. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in the register.

FWRITE0 Write floating point value to register 0
Opcode: 19 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Description: reg[0] = 32-bit floating point value
The floating point value is stored in register A. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in register A.

FWRITEA Write floating point value to register A
Opcode: 17 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Description: reg[A] = 32-bit floating point value
The floating point value is stored in register A. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in register A.

FWRITEX Write floating point value to register X
Opcode: 18 b1...b4 where: b1...b4 is floating point value (b1 is MSB)

Micromega Corporation 30 uM-FPU V3 Instruction Reference

Micromega Corporation 31 uM-FPU V3 Instruction Reference

Micromega Corporation 32 uM-FPU V3 Instruction Reference

Description: reg[A] = 32-bit floating point value, X = X + 1
The floating point value is stored in register X, and X is incremented to the next register. If the PIC
data format has been selected (using the PICMODE instruction), the PIC format floating point
value is converted to IEEE 754 format before being stored in register A.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

GOTO Computed GOTO
Opcode: 89 nn where: nn is a register number

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
Function execution will continue at the address determined by adding the register value to the
current function address. If the register value is negative, or the new address is outside the address
range of the function, a function return occurs.

IEEEMODE Select IEEE floating point format
Opcode: F4

Description: Selects the IEEE 754 floating point format for the FREAD, FREADA, FREADX, FWRITE,
FWRITEA, and FWRITEX instructions. This is the default mode on reset and only needs to be
changed if the PICMODE instruction has been used.

INDA Select A using value in register
Opcode: 7C nn where: nn is a register number

Description: A = reg[nn]
Select register A using the value contained in register nn

INDX Select X using value in register
Opcode: 7D nn where: nn is a register number

Description: X = reg[nn]
Select register X using the value contained in register nn.

JMP Unconditional jump
Opcode: 83 b1 b2 where: b1,b2 is the function address

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
Function execution will continue at the address specified. The BRA instruction can be used for
addresses that are within -128 to 127 bytes of the current address. If the new address is outside the
address range of the function, a function return occurs.

JMP Conditional jump
Opcode: 84 cc, bb where: cc is the test condition

b1,b2 is the function address

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If
the test condition is true, then function execution will continue at the address specified. The BRA

Micromega Corporation 31 uM-FPU V3 Instruction Reference

Micromega Corporation 32 uM-FPU V3 Instruction Reference

Micromega Corporation 33 uM-FPU V3 Instruction Reference

instruction can be used for addresses that are within -128 to 127 bytes of the current address. If the
new address is outside the address range of the function, a function return occurs.

LABS Long Integer absolute value
Opcode: BC

Description: reg[A] = | reg[A] |, status = status(reg[A])
The absolute value of the long integer value in register A is stored in register A.

LADD Long integer add
Opcode: 9B nn where: nn is a register number

Description: reg[A] = reg[A] + reg[nn], status = status(reg[A])
The long integer value in register nn is added to register A.

LADD0 Long integer add register 0
Opcode: A6

Description: reg[A] = reg[A] + reg[0], status = status(reg[A])
The long integer value in register 0 is added to register A.

LADDI Long integer add immediate value
Opcode: AF bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] + long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and added to register A.

LAND Long integer AND

Opcode: C0 nn where: nn is a register number

Description: reg[A] = reg[A] AND reg[nn], status = status(reg[A])
The bitwise AND of the values in register A and register nn is stored in register A.

LCMP Long integer compare
Opcode: A1 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])
Compares the signed long integer value in register A with the value in register nn and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as
follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LCMP0 Long integer compare register 0
Opcode: AA

Description: status = compare(reg[A] - reg[0])

Micromega Corporation 32 uM-FPU V3 Instruction Reference

Micromega Corporation 33 uM-FPU V3 Instruction Reference

Micromega Corporation 34 uM-FPU V3 Instruction Reference

Compares the signed long integer value in register A with the value in register 0 and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as
follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LCMP2 Long integer compare
Opcode: B9 nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])
Compares the signed long integer value in register nn with the value in register mm and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as
follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LCMPI Long integer compare immediate value
Opcode: B3 bb where: bb is a signed byte value (-128 to 127)

Description: status = compare(reg[A] - long(bb))
The signed byte value is converted to long integer and compared to the signed long integer value
in register A. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LDEC Long integer decrement

Opcode: BE

Description: reg[nn] = reg[nn] - 1, status = status(reg[nn])
The long integer value in register nn is decremented by one. The long integer status is stored in the
status byte.

LDIV Long integer divide
Opcode: A0 nn where: nn is a register number

Description: regA] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])
The long integer value in register A is divided by the signed value in register nn, and the result is
stored in register A. The remainder is stored in register 0.

Special cases: • if reg[nn] is zero, the result is the largest positive long integer ($7FFFFFFF)

Micromega Corporation 33 uM-FPU V3 Instruction Reference

Micromega Corporation 34 uM-FPU V3 Instruction Reference

Micromega Corporation 35 uM-FPU V3 Instruction Reference

LDIV0 Long integer divide by register 0
Opcode: A9

Description: reg[A] = reg[A] / reg[0], reg[0] = remainder, status = status(reg[A])
The long integer value in register A is divided by the signed value in register 0, and the result is
stored in register A. The remainder is stored in register 0.

Special cases: • if reg[0] is zero, the result is the largest positive long integer ($7FFFFFFF)

LDIVI Long integer divide by immediate value
Opcode: B2 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] / long(bb), reg[0] = remainder, status = status(reg[A])
The signed byte value is converted to a long integer and register A is divided by the converted
value. The result is stored in register A. The remainder is stored in register 0.

Special cases: • if the signed byte value is zero, the result is the largest positive long integer ($7FFFFFFF)

LEFT Left Parenthesis
Opcode: 14

Description: The left parenthesis command saves the current register A selection, allocates the next temporary
register, and selects the new temporary register as register A. Used together with the right
parenthesis command to allocate temporary registers, and to change the order of a calculation.
There are five temporary registers, so parentheses can be nested up to five levels.

Special cases: • the maximum number of temporary registers is five. If the maximum number is exceeded, the
value of register A is set to NaN ($7FFFFFFF).

LINC Long integer increment

Opcode: BD

Description: reg[nn] = reg[nn] + 1, status = status(reg[nn])
The long integer value in register nn is incremented by one. The long integer status is stored in the
status byte.

LMAX Floating point maximum
Opcode: C5 nn where: nn is a register number

Description: reg[A] = max(reg[A], reg[nn]), status = status(reg[A])
The maximum signed long integer value of registers A and register nn is stored in register A.

Special cases: • if either value is NaN, then the result is NaN

LMIN Floating point minimum
Opcode: C4 nn where: nn is a register number

Description: reg[A] = min(reg[A], reg[nn]), status = status(reg[A])
The minimum signed long integer value of registers A and register nn is stored in register A.

Micromega Corporation 34 uM-FPU V3 Instruction Reference

Micromega Corporation 35 uM-FPU V3 Instruction Reference

Micromega Corporation 36 uM-FPU V3 Instruction Reference

Special cases: • if either value is NaN, then the result is NaN

LMUL Long integer multiply
Opcode: 9F nn where: nn is a register number

Description: reg[A] = reg[A] * reg[nn], status = status(reg[A])
The long integer value in register A is multiplied by register nn and the result is stored in register
A.

LMUL0 Long integer multiply by register 0
Opcode: A8

Description: reg[A] = reg[A] * reg[0], status = status(reg[A])
The long integer value in register A is multiplied by register 0 and the result is stored in register A.

LMULI Long integer multiply by immediate value
Opcode: B1 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] * long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and the long integer value in register A is
multiplied by the converted value. The result is stored in register A.

LNEG Long integer negate
Opcode: BB

Description: reg[A] = -reg[A], status = status(reg[A])
The negative of the long integer value in register A is stored in register A.

LNOT A = NOT A
Opcode: BF

Description: reg[A] = NOT reg[A], status = status(reg[A])
The bitwise complement of the value in register A is stored in register A.

LOAD reg[0] = reg[nn]
Opcode: 0A nn where: nn is a register number

Description: reg[0] = reg[nn]
Load register 0 with the value of reg[nn].

LOADA Load register 0 with the value of register A
Opcode: 0B

Description: reg[0] = reg[A]
Load register 0 with the value of register A.

LOADBYTE Load register 0 with 8-bit signed value
Opcode: 59 bb where: bb is a signed byte value (-128 to 127)

Description: reg[0] = float(signed bb)
Loads register 0 with the 8-bit signed integer value converted to floating point value.

LOADCON Load register 0 with floating point constant

Micromega Corporation 35 uM-FPU V3 Instruction Reference

Micromega Corporation 36 uM-FPU V3 Instruction Reference

Micromega Corporation 37 uM-FPU V3 Instruction Reference

Opcode: 5F bb where: bb selects the constant

Description: reg[0] = constant[bb]
Loads register 0 with the floating point constant specified by bb as follows:
0 1.0 100

1 10.0 101

2 100.0 102

3 1000.0 103

4 10000.0 104

5 100000.0 105

6 1000000.0 106

7 10000000.0 107

8 100000000.0 108

9 1000000000.0 109

10 ≈ 3.4028235×1038 largest positive finite 32-bit floating point value
11 ≈ 1.4012985×10−45 smallest positive non-zero 32-bit floating point value
12 299792458.0 speed of light in vacuum (m/s)
13 6.6742e-11 Newtonian constant of gravitation (m3/kg*s2)
14 9.80665 acceleration of gravity
15 9.1093826e-31 electron mass (kg)
16 1.67262171e-27 proton mass (kg)
17 1.67492728e-27 neutron mass (kg)
18 6.0221415e23 Avogadro constant (/mol)
19 1.60217653e-19 elementary charge, electron volt
20 101.325 standard atmosphere (kPa)

Special cases: • if the byte value bb is greater than 20, register A is set to NaN.

LOADE Load register 0 with floating point value of e (2.7182818)
Opcode: 5D

Description: reg[0] = 2.7182818
Loads register 0 with the floating point value of e (2.7182818).

LOADIND Load Indirect
Opcode: 7A nn where: nn is a register number

Description: reg[0] = reg[reg[nn]]
Load register 0 with the value of the register number contained in register nn.

Special Cases: If the value in register nn is not a valid register number, register 0 is set to NaN.

LOADMA Load register 0 with the value from matrix A
Opcode: 68 bb bb where: bb, bb selects the row, column of matrix A

Description: reg[0] = matrix A [bb, bb]
Load register 0 with a value from matrix A.

Special Cases: If the row or column is out of range, NaN is returned.

LOADMB Load register 0 with the value from matrix A
Opcode: 69 bb bb where: bb, bb selects the row, column of matrix A

Description: reg[0] = matrix B [bb, bb]

Micromega Corporation 36 uM-FPU V3 Instruction Reference

Micromega Corporation 37 uM-FPU V3 Instruction Reference

Micromega Corporation 38 uM-FPU V3 Instruction Reference

Load register 0 with a value from matrix B.
Special Cases: If the row or column is out of range, NaN is returned.

LOADMC Load register 0 with the value from matrix A
Opcode: 6A bb bb where: bb, bb selects the row, column of matrix A

Description: reg[0] = matrix C [bb, bb]
Load register 0 with a value from matrix C.

Special Cases: If the row or column is out of range, NaN is returned.

LOADPI Load register 0 with value of Pi
Opcode: 5E

Description: reg[0] = 3.1415927
Loads register 0 with the floating point value of pi (3.1415927).

LOADUBYTE Load register 0 with 8-bit unsigned value
Opcode: 5A bb where: bb is an unsigned byte value (0 to 255)

Description: reg[0] = float(unsigned bb)
The 8-bit unsigned value is converted to floating point and stored in register 0.

LOADUWORD Load register 0 with 16-bit unsigned value
Opcode: 5C b1,b2 where: b1,b2 is an unsigned word value (0 to 65535)

Description: reg[0] = float(unsigned (b1*256 + b2))
The 16-bit unsigned value is converted to floating point and stored in register 0.

LOADWORD Load register 0 with 16-bit signed value
Opcode: 5B b1,b2 where: b1,b2 is a signed word value (-32768 to 32767)

Description: reg[0] = float (signed(b1*256 + b2))
The 16-bit signed value is converted to floating point and stored in register 0.

LOADX Load register 0 with the value of register X
Opcode: 0C

Description: reg[0] = reg[A]
Load register 0 with the value of register X, and increment X to select the next register in
sequence.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

LOG Logarithm (base e)
Opcode: 43

Description: reg[A] = log(reg[A])
Calculates the natural log of the floating point value in register A. The result is stored in register A.
The number e (2.7182818) is the base of the natural system of logarithms.

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

Micromega Corporation 37 uM-FPU V3 Instruction Reference

Micromega Corporation 38 uM-FPU V3 Instruction Reference

Micromega Corporation 39 uM-FPU V3 Instruction Reference

LOG10 Logarithm (base 10)
Opcode: 44

Description: reg[A] = log10(reg[A])
Calculates the base 10 logarithm of the floating point value in register A. The result is stored in
register A.

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is -infinity

LONGBYTE Load register 0 with 8-bit signed value
Opcode: C6 bb where: bb is a signed byte value (-128 to 127)

Description: reg[0] = long(signed (bb)), status = status(reg[0])
The 8-bit signed value is converted to a long integer and stored in register 0.

LONGCON Load register 0 with long integer constant
Opcode: CA bb where: bb selects the constant

Description: reg[0] = constant[bb], status = status(reg[0])
Loads register 0 with the long integer constant specified by bb as follows:
0 1 100

1 10 101

2 100 102

3 1,000 103

4 10,000 104

5 100,000 105

6 1,000,000 106

7 10,000,000 107

8 100,000,000 108

9 1,000,000,000 109

10 2,147,483,647 largest long integer value
11 -2,147,483,648 smallest long integer value

Special cases: • if the byte value bb is greater than 11, register A is set to zero.

LONGUBYTE Load register 0 with 8-bit unsigned value
Opcode: C7 bb where: bb is an unsigned byte value (0 to 255)

Description: reg[0] = long(unsigned (bb)), status = status(reg[0])
The 8-bit unsigned value is converted to a long integer and stored in register 0.

LONGUWORD Load register 0 with 16-bit unsigned value
Opcode: C9 b1,b2 where: b1,b2 is an unsigned word value (0 to 65535)

Description: reg[0] = long(unsigned (b1*256 + b2)), status = status(reg[0])
The 16-bit unsigned value is converted to a long integer and stored in register 0.

LONGWORD Load register 0 with 16-bit signed value
Opcode: C8 b1,b2 where: b1,b2 is a signed word value (-32768 to 32767)

Micromega Corporation 38 uM-FPU V3 Instruction Reference

Micromega Corporation 39 uM-FPU V3 Instruction Reference

Micromega Corporation 40 uM-FPU V3 Instruction Reference

Description: reg[0] = long(signed (b1*256 + b2)), status = status(reg[0])
The 16-bit signed value is converted to a long integer and stored in register 0.

LOR Long integer OR
Opcode: C1 nn where: nn is a register number

Description: reg[A] = reg[A] OR reg[nn], status = status(reg[A])
The bitwise OR of the values in register A and register nn is stored in register A.

LREAD Read long integer value
Opcode: 94 nn where: nn is a register number
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[nn]
The long integer value of register nn is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREAD0 Read long integer value from register 0
Opcode: 97
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[0]
The long integer value of register 0 is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREADA Read long integer value from register A
Opcode: 95
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Description: Return 32-bit value from reg[A], status = status(reg[A])
The long integer value of register A is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREADBYTE Read the lower 8-bits of register A
Opcode: 98
Returns: bb where: bb is 8-bit value

Description: Return 8-bit value from reg[A]
Returns the lower 8 bits of register A. The byte containing the 8-bit long integer value must be
read immediately following the instruction.

LREADWORD Read the lower 16-bits of register A
Opcode: 99
Returns: b1,b2 where: b1, b2 is 16-bit value (b1 is MSB)

Description: Return 16-bit value from reg[A]
Returns the lower 16 bits of register A. The two bytes containing the 16-bit long integer value
must be read immediately following this instruction.

LREADX Read long integer value from register X
Opcode: 96
Returns: b1,b2,b3,b4 where: b1, b2, b3, b4 is floating point value (b1 is MSB)

Micromega Corporation 39 uM-FPU V3 Instruction Reference

Micromega Corporation 40 uM-FPU V3 Instruction Reference

Micromega Corporation 41 uM-FPU V3 Instruction Reference

Description: Return 32-bit value from reg[X], X = X + 1
The long integer value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit floating point value must be read immediately following this instruction.

LSET Set register A
Opcode: 9C nn where: nn is a register number

Description: reg[A] = reg[nn], status = status(reg[A])
Set register A to the value of register nn.

LSET0 Set register A from register 0
Opcode: A5
Description: reg[A] = reg[0], status = status(reg[A])

Set register A to the value of register 0.

LSETI Set register from immediate value
Opcode: AE bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and stored in register A.

LSHIFT A = A shifted by B bit positions
Opcode: C3 bb where: bb is 8-bit value

Description: if reg[nn] > 0, then reg[A] = reg[A] shifted left by bb bits
if reg[nn]< 0, then reg[A] = reg[A] shifted right by bb bits
status = status(reg[nn])
The value in register A is shifted by the number of bit positions specified by the long integer value
in register nn. Register A is shifted left if the value in reg[nn] is positive and right if the value is
negative.

Special cases: • if reg[nn] = 0, no shift occurs
• if reg[nn] > 32 or reg[nn] < –32, then reg[A] = 0

LSTATUS Get long integer status
Opcode: B7 nn where: nn is a register number

Description: status = status(reg[nn])
Set the internal status byte to the floating point status of the value in register nn. The status byte
can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

LSTATUSA Get long integer status of register A
Opcode: B8

Description: status = status(reg[A])
Set the internal status byte to the floating point status of the value in register A. The status byte can

Micromega Corporation 40 uM-FPU V3 Instruction Reference

Micromega Corporation 41 uM-FPU V3 Instruction Reference

Micromega Corporation 42 uM-FPU V3 Instruction Reference

be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z

Bit 1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

LSUB Long integer subtract
Opcode: 9E nn where: nn is a register number

Description: reg[A] = reg[A] - reg[nn], status = status(reg[A])
The long integer value in register nn is subtracted from register A.

LSUB0 Long integer subtract register 0
Opcode: A7

Description: reg[A] = reg[A] - reg[0], status = status(reg[A])
The long integer value in register 0 is subtracted from register A.

LSUBI Long integer subtract immediate value
Opcode: B0 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] - long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and subtracted from register A.

LTABLE Long integer reverse table lookup
Opcode: 87 cc tc t0...tn where: cc is the test condition

tc is the size of the table
T0...tn are 32-bit long integer values

Description: reg[0] = index of table entry that matches the test condition for reg[A]
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
performs a reverse table lookup on a long integer value. The value in register A is compared to the
values in the table using the specified test condition. The index number of the first table entry that
satisfied the test condition is returned in register 0. If no entry is found, register 0 is unchanged.

LTOA Convert long integer value to ASCII string and store in string buffer
Opcode: 9B bb where: bb is the format byte

Description: stringbuffer = converted string, status = status(reg[A])
The long integer value in register A is converted to an ASCII string and stored in the string buffer.
The byte immediately following the opcode is the format byte and determines the format of the
converted value.

If the format byte is zero, the length of the converted string is variable and can range from 1 to 11
characters in length. Examples of the converted string are as follows:

1
500000
-3598390

If the format byte is non-zero, it is interpreted as a decimal number. A value between 0 and 15
specifies the length of the converted string. The converted string is right justified. If 100 is added
to the format value the value is converted as an unsigned long integer, otherwise it is converted as

Micromega Corporation 41 uM-FPU V3 Instruction Reference

Micromega Corporation 42 uM-FPU V3 Instruction Reference

Micromega Corporation 43 uM-FPU V3 Instruction Reference

an signed long integer. If the value is larger than the specified width, asterisks are stored. If the
length is specified as zero, the string will be as long as necessary to represent the number.
Examples of the converted string are as follows:

Value in register A Format byte Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1
-1 104 (unsigned 4) ****
0 4 (signed 4) 0
0 0 (unformatted) 0
1000 6 (signed 6) 1000

The maximum length of the string is 15. This instruction is normally followed by a READSTR
instruction to read the string.

LTST Long integer bit test
Opcode: A4 nn where: nn is a register number

Description: status = status(reg[A] AND reg[nn])
Sets the internal status byte based on the result of a bitwise AND of the values in register A and
register nn. The values of register A and register nn are not changed. The status byte can be read
with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if the MSB of the result is set
Bit 0 Zero Set the result is zero

LTST0 Long integer bit test register 0
Opcode: AD

Description: status = status(reg[A] AND reg[0])
Sets the internal status byte based on the result of a bitwise AND of the value in register A and
register 0. The values of register A and register nn are not changed. The status byte can be read
with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if the MSB of the result is set
Bit 0 Zero Set the result is zero

LTSTI Long integer bit test using immediate value
Opcode: B6 bb where: bb is a signed byte value (0 to 255)

Description: status = status(reg[A] AND long(bb))
The unsigned byte value is converted to long integer and the internal status byte is set based on the
result of a bitwise AND of the converted value and register A. The values of register A and register
nn are not changed. The status byte can be read with the READSTATUS instruction. It is set as
follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if the MSB of the result is set

Micromega Corporation 42 uM-FPU V3 Instruction Reference

Micromega Corporation 43 uM-FPU V3 Instruction Reference

Micromega Corporation 44 uM-FPU V3 Instruction Reference

Bit 0 Zero Set the result is zero

LUCMP Unsigned long integer compare
Opcode: A3 nn where: nn is a register number

Description: status = compare(reg[A] - reg[nn])
Compares the unsigned long integer value in register A with register nn and sets the internal status
byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

 1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LUCMP0 Unsigned long integer compare register 0
Opcode: AC

Description: status = compare(reg[A] - reg[0])
Compares the unsigned long integer value in register A with register 0 and sets the internal status
byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[0]
Bit 0 Zero Set if reg[A] = reg[0]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[0]

LUCMP2 Unsigned long integer compare
Opcode: BA nn mm where: nn and mm are register numbers

Description: status = compare(reg[nn] - reg[mm])
Compares the signed long integer value in register nn with the value in register mm and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as
follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < reg[nn]
Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit 0 or Bit 1 is set, reg[A] > reg[nn]

LUCMPI Unsigned long integer compare immediate value
Opcode: B5 bb where: bb is an unsigned byte value (0 to 255)

Description: status = compare(reg[A] - long(bb))
The unsigned byte value is converted to long integer and compared to register A. The status byte
can be read with the READSTATUS instruction. It is set as follows:

1 - - - - S

7 6 5 4 3 2 1 0Bit

- Z
Bit 1 Sign Set if reg[A] < float(bb)
Bit 0 Zero Set if reg[A] = float(bb)

If neither Bit 0 or Bit 1 is set, reg[A] > float(bb)

Micromega Corporation 43 uM-FPU V3 Instruction Reference

Micromega Corporation 44 uM-FPU V3 Instruction Reference

Micromega Corporation 45 uM-FPU V3 Instruction Reference

LUDIV Unsigned long integer divide
Opcode: A2 nn where: nn is a register number

Description: reg[A] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])
The unsigned long integer value in register A is divided by register nn, and the result is stored in
register A. The remainder is stored in register 0.

Special cases: • if register nn is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIV0 Unsigned long integer divide by register 0
Opcode: AB

Description: reg[A] = reg[A] / reg[0] , reg[0] = remainder, status = status(reg[A])
The unsigned long integer value in register A is divided by the signed value in register 0, and the
result is stored in register A. The remainder is stored in register 0.

Special cases: • if register 0 is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIVI Unsigned long integer divide by immediate value
Opcode: B4 bb where: bb is a signed byte value (0 to 255)

Description: reg[A] = reg[A] / long(bb) , reg[0] = remainder, status = status(reg[A])
The unsigned byte value is converted to a long integer and register A is divided by the converted
value. The result is stored in register A. The remainder is stored in register 0.

Special cases: • if the signed byte value is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LWRITE Write long integer value
Opcode: 90 nn b1,b2,b3,b4 where: nn is register number

b1, b2, b3, b4 is long integer value (b1 is MSB)
Description: reg[nn] = 32-bit long integer value, status = status(reg[nn])

The long integer value is stored in register nn.

LWRITE0 Write long integer value to register0
Opcode: 93 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[0] = 32-bit long integer value, status = status(reg[0])
The long integer value is stored in register 0.

LWRITEA Write long integer value to register A
Opcode: 91 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[A] = 32-bit long integer value, status = status(reg[A])
The long integer value is stored in register A.

LWRITEX Write long integer value to register X
Opcode: 92 b1,b2,b3,b4 where: b1, b2, b3, b4 is long integer value (b1 is MSB)

Description: reg[X] = 32-bit long integer value, status = status(reg[X]), X = X + 1
The long integer value is stored in register X, and X is incremented to the next register.

Micromega Corporation 44 uM-FPU V3 Instruction Reference

Micromega Corporation 45 uM-FPU V3 Instruction Reference

Micromega Corporation 46 uM-FPU V3 Instruction Reference

LXOR Long integer XOR
Opcode: C2 nn where: nn is a register number

Description: reg[A] = reg[A] XOR reg[nn], status = status(reg[A])
The bitwise XOR of the values in register A and register nn is stored in register A.

MOP Matrix Operation
Opcode: 6E bb where: bb is the operation code

Description: The operation code nn selects one of the following operations:
0 Scalar Set. Each element: MA[r,c] = reg[0]
1 Scalar Add. For each element: MA[r,c] = MA[r,c] + reg[0]
2 Scalar Subtract. For each element: MA[r,c] = MA[r,c] + reg[0]
3 Scalar Subtract (reverse). For each element: MA[r,c] = reg[0] - MA[r,c]
4 Scalar Multiply. For each element: MA[r,c] = MA[r,c] * reg[0]
5 Scalar Divide. For each element: MA[r,c] = MA[r,c] / reg[0]
6 Scalar Divide (reverse). For each element: MA[r,c] = reg[0] / MA[r,c]
7 Scalar Power. For each element: MA[r,c] = MA[r,c] ** reg[0]
8 Element-wise Set. Each element: MA[r,c] = MB[r,c]
9 Element-wise Add. For each element: MA[r,c] = MA[r,c] + MB[r,c]
10 Element-wise Subtract. For each element: MA[r,c] = MA[r,c] + MB[r,c]
11 Element-wise Subtract (reverse). For each element: MA[r,c] = MB[r,c] - MA[r,c]
12 Element-wise Multiply. For each element: MA[r,c] = MA[r,c] * MB[r,c]
13 Element-wise Divide. For each element: MA[r,c] = MA[r,c] / MB[r,c]
14 Element-wise Divide (reverse). For each element: MA[r,c] = MB[r,c] / MA[r,c]
15 Element-wise Power. For each element: MA[r,c] = MA[r,c] ** MB[r,c]
16 Matrix Multiply. Calculate: MA = MB * MC
17 Identity matrix. Set: MA = identity matrix
18 Diagonal matrix. Set: MA = diagonal matrix (reg[0] value stored on diagonal)
19 Transpose. Set: MA = transpose MB
20 Count. Set: reg[0] = count of all elements in MA
21 Sum. Set: reg[0] = sum of all elements in MA
22 Average. Set: reg[0] = average of all elements in MA
23 Minimum. Set: reg[0] = minimum of all elements in MA
24 Maximum Set: reg[0] = maximum of all elements in MA
25 Copy matrix A to matrix B.
26 Copy matrix A to matrix C.
27 Copy matrix B to matrix A.
28 Copy matrix B to matrix C.
29 Copy matrix C to matrix A.
30 Copy matrix C to matrix B.

NOP No operation
Opcode: 00

Description: No operation.

PICMODE Select PIC floating point format
Opcode: F5

Micromega Corporation 45 uM-FPU V3 Instruction Reference

Micromega Corporation 46 uM-FPU V3 Instruction Reference

Micromega Corporation 47 uM-FPU V3 Instruction Reference

Description: Selects the alternate PIC floating point mode using by many PIC compilers. All internal data on
the uM-FPU is stored in IEEE 754 format, but when the uM-FPU is in PIC mode an automatic
conversion is done by the FREAD, FREADA, FREADX, FWRITE, FWRITEA, and FWRITEX
instructions so the PIC program can use floating point data in the alternate format. Normally this
instruction would be issued immediately after the reset as part of the initialization code. The
IEEEMODE instruction can be used to revert to standard IEEE 754 floating point mode.

POLY A = nth order polynomial
Opcode: 88 tc t0...tn where: tc is the number of coefficient values

T0...tn are 32-bit floating point values

Description: reg[A] = result of nth order polynomial calculation
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
The value of the specified polynomial is calculated and stored in register A. The general form of
the polynomial is:

 y = A0 + A1x
1 + A2x

2 + … Anx
n

The value of x is the initial value of register A. An nth order polynomial will have n+1 coefficients
stored in the table. The coefficient values A0, A1, A2, … are stored as a series of 32-bit floating
point values (4 bytes) stored in order from An to A0. If a given term in the polynomial is not
needed, a zero must be is stored for that value.

Example: The polynomial 3x + 5 would be represented as follows:

88 02 40 A0 00 00 40 40 00 00

Where: 88 opcode
02 size of the table (order of the polynomial + 1)
40 40 00 00 floating point constant 3.0
40 A0 00 00 floating point constant 5.0

RADIANS Convert degrees to radians
Opcode: 4F

Description: reg[A] = radians(reg[A])
The floating point value in register A is converted from degrees to radians and the result is stored
in register A.

Special case: • if the value is NaN, then the result is NaN

READSEL Read string selection
Opcode: EC
Returns: aa...00 where: aa...00 is a zero-terminated string

Description: Returns the current string selection. Data bytes must be read immediately following this
instruction and continue until a zero byte is read. This instruction is typically used after an
STRSEL or STRFIELD instruction.

READSTATUS Return the last status byte
Opcode: F1
Returns: ss where: ss is the status byte

Micromega Corporation 46 uM-FPU V3 Instruction Reference

Micromega Corporation 47 uM-FPU V3 Instruction Reference

Micromega Corporation 48 uM-FPU V3 Instruction Reference

Description: The 8-bit internal status byte is returned.

READSTR Read string
Opcode: F2
Returns: aa...00 where: aa...00 is a zero-terminated string

Description: Returns the zero terminated string in the string buffer. Data bytes must be read immediately
following this instruction and continue until a zero byte is read. This instruction is used after
instructions that load the string buffer (e.g. FTOA, LTOA, VERSION).

READVAR Read internal variable
Opcode: FC bb where: bb is index of internal register

Description: reg[0] = internal register value
Sets register 0 to the current value of one of the internal registers (based on index value passed).

0 A register
1 X register
2 Matrix A register
3 Matrix A rows
4 Matrix A columns
5 Matrix B register
6 Matrix B rows
7 Matrix B columns
8 Matrix C register
9 Matrix C rows
10 Matrix C columns
11 internal mode word
12 last status byte
13 clock ticks per millisecond
14 current length of string buffer
15 string selection starting point
16 string selection length

RESET Reset
Opcode: FF

Description: Nine consecutive FF bytes will cause the uM-FPU to reset. If less then nine consecutive FF bytes
are received, they are treated as NOPs.

RET Return from user-defined function
Opcode: 80

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
causes a return from the current function. Execution will continue with the instruction following
the last function call. This instruction is required as the last instruction of a user-defined function
in EEPROM memory.

RIGHT Right Parenthesis
Opcode: 15

Micromega Corporation 47 uM-FPU V3 Instruction Reference

Micromega Corporation 48 uM-FPU V3 Instruction Reference

Micromega Corporation 49 uM-FPU V3 Instruction Reference

Description: The right parenthesis command copies the value of register A (the current temporary register) to
register 0. If the right parenthesis is the outermost parenthesis, the register A selection from before
the first left parenthesis is restored, otherwise the previous temporary register is selected as
register. Used together with the left parenthesis command to allocate temporary registers, and to
change the order of a calculation. There are five temporary registers, so parentheses can be nested
up to five levels.

Special case: • if no left parenthesis is currently outstanding, then the value of register 0 is set to NaN.
($7FFFFFFF).

ROOT Calculate nth root
Opcode: 42 nn where: nn is a register number

Description: reg[A] = reg[A] ** (1 / reg[nn])
Calculates the nth root of the floating point value in register A and stores the result in register A.
Where the value n is equal to the floating point value in register nn. It is equivalent to raising A to
the power of (1 / nn).

Special cases: • see the description of the POWER instruction for the special cases of (1/reg[nn])

• if reg[nn] is infinity, then (1 / reg[nn]) is zero
• if reg[nn] is zero, then (1 / reg[nn]) is infinity

ROUND Floating point Rounding
Opcode: 53

Description: reg[A] = round(reg[A])
The floating point value equal to the nearest integer to the floating point value in register A is
stored in register A.

Special cases: • if the value is NaN, then the result is NaN
• if the value is +infinity or -infinity, then the result is +infinity or -infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

SAVEIND Save Indirect
Opcode: 7B nn where: nn is a register number

Description: reg[reg[nn]] = reg[A]
The value of register A is stored in the register whose register number is contained in register nn.

Special Cases: If the value in register nn is not a valid register number, no value is stored.

SAVEMA Save register A value to matrix A
Opcode: 6B b1 b2 where: b1 selects the row and b2 selects the column of matrix A

Description: matrix A [b1, b2] = reg[A]
Store the register A value to matrix A at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SAVEMB Save register A value to matrix B
Opcode: 6C b1 b2 where: b1 selects the row and b2 selects the column of matrix B

Micromega Corporation 48 uM-FPU V3 Instruction Reference

Micromega Corporation 49 uM-FPU V3 Instruction Reference

Micromega Corporation 50 uM-FPU V3 Instruction Reference

Description: matrix A [b1, b2] = reg[A]
Store the register A value to matrix B at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SAVEMC Save register A value to matrix C
Opcode: 6D b1 b2 where: b1 selects the row and b2 selects the column of matrix C

Description: matrix A [b1, b2] = reg[A]
Store the register A value to matrix C at the row, column specified.

Special Cases: If the row or column is out of range, no value is stored

SELECTA Select A
Opcode: 01 nn where: nn is a register number

Description: A = nn
The value nn is used to select register A.

SELECTMA Select matrix A
Opcode: 65 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns
Description: Select matrix A, X = nn

The value nn is used to select a register that is the start of matrix A. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,
FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.

SELECTMB Select matrix B
Opcode: 66 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns

Description: Select matrix B, X = nn
The value nn is used to select a register that is the start of matrix B. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,
FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.

SELECTMC Select matrix C
Opcode: 67 nn b1 b2 where: nn is a register number

b1 is the number of rows, b2 is number of columns

Description: Select matrix C, X = nn
The value nn is used to select a register that is the start of matrix B. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,

Micromega Corporation 49 uM-FPU V3 Instruction Reference

Micromega Corporation 50 uM-FPU V3 Instruction Reference

Micromega Corporation 51 uM-FPU V3 Instruction Reference

FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.

SELECTX Select register X
Opcode: 02 nn where: nn is a register number

Description: X = nn
The value nn is used to select register X.

SETOUT Set output
Opcode: D0 nn where: nn is a command byte

Description: Set the OUT0 or OUT1 output pin according to the command byte nn as follows:
The upper 4 bits of nn are used to select the output pin:

0 - OUT 0
1 - OUT 1

The lower 4 bits of nn specify the action to take:
0 - set output low
1 - set output high
2 - toggle the output to opposite level
3 - set output to high impedance

SIN Sine
Opcode: 47

Description: reg[A] = sin(reg[A])
Calculates the sine of the angle (in radians) in register A and stored the result in register A.

Special cases: • if A is NaN or an infinity, then the result is NaN
• if A is 0.0, then the result is 0.0
• if A is –0.0, then the result is –0.0

SQRT Square root
Opcode: 41

Description: reg[A] = sqrt(reg[A])
Calculates the square root of the floating point value in register A and stored the result in register
A.

Special cases: • if the value is NaN or less than zero, then the result is NaN
• if the value is +infinity, then the result is +infinity
• if the value is 0.0 or –0.0, then the result is 0.0 or –0.0

STRCMP Compare string with string at selection point
Opcode: E6 aa...00 where: aa...00 is a zero-terminated string

Description: The string is compared with the string at the current selection point and the internal status byte is
set. The READSTATUS instruction can be used to reference the internal status value.

STRFCHR Set field separator characters

Micromega Corporation 50 uM-FPU V3 Instruction Reference

Micromega Corporation 51 uM-FPU V3 Instruction Reference

Micromega Corporation 52 uM-FPU V3 Instruction Reference

Opcode: E8 aa...00 where: aa...00 is a zero-terminated string

Description: The string specifies a list of characters to be used as field separators. The default field separator is
a comma.

STRFIELD Find field in string and set selection point
Opcode: E9 aa...00 where: aa...00 is a zero-terminated string

Description: The selection point is set to the specified field. Fields are separated by the characters specified by
the last STRFCHR instruction. If no STRFCHR instruction has been executed, the default field
separator is a comma. If the specified field is not found, the selection point is set to the end of the
string buffer.

STRFIND Find string in the string buffer and set selection point
Opcode: E7 aa...00 where: aa...00 is a zero-terminated string

Description: Insert the string in the string buffer at the current selection point. If the specified string is not
found, the selection point is set to the end of the string buffer.

STRINS Insert string in string buffer at selection point
Opcode: E5 aa...00 where: aa...00 is a zero-terminated string

Description: Insert the string in the string buffer at the current selection point.

STRSEL Set string selection point
Opcode: E4 nn mm where: nn is the character position of the start of the selection

mm is the length of the selection

Description: Set the start of the string selection to character nn and the length of the selection to mm characters.

STRSET Copy string to string buffer
Opcode: E3 aa...00 where: aa...00 is a zero-terminated string

Description: Copy the string to the string buffer.

STRTOF Convert string selection to floating point
Opcode: EA

Description: Convert the string at the current selection point to a floating point value and store the result in
register 0.

STRTOL Convert string selection to long integer
Opcode: EB

Description: Convert the string at the current selection point to a long integer value and store the result in
register 0.

SWAP Swap registers

Micromega Corporation 51 uM-FPU V3 Instruction Reference

Micromega Corporation 52 uM-FPU V3 Instruction Reference

Micromega Corporation 53 uM-FPU V3 Instruction Reference

Opcode: 12 nn mm where: nn and mm are register numbers

Description: tmp = reg[nn], reg[nn] = reg[mm], reg[mm] = tmp
The values of register nn and register mm are swapped.

SWAPA Swap register A
Opcode: 13 nn where: nn is a register number

Description: tmp = reg[nn], reg[nn] = reg[A], reg[A] = tmp
The values of register nn and register A are swapped.

SYNC Synchronization
Opcode: F0
Returns: 5C

Description: A sync character (0x5C) is sent in reply. This instruction is typically used after a reset to verify
communications.

TABLE Table lookup
Opcode: 85 tc t0...tn where: tc is the size of the table

t0...tn are 32-bit floating point or integer values

Description: reg[A] = value from table indexed by reg[0]
This opcode is only valid within a user function stored in the uM-FPU Flash memory or EEPROM
memory. The value of the item in the table, indexed by register 0, is stored in register A. The first
byte after the opcode specifies the size of the table, followed by groups of four bytes representing
the 32-bit values for each item in the table. This instruction can be used to load either floating
point values or long integer values. The long integer value in register 0 is used as an index into the
table, with the first table entry having index 0.

Special cases: • if reg[0] <= 0, then the result is item 0
• if reg[0] > maximum size of table, then the result is the last item in the table

TAN Tangent
Opcode: 49

Description: reg[A] = tan(reg[A])
Calculates the tangent of the angle (in radians) in register A and stored the result in register A.

Special cases: • if reg[A] is NaN or an infinity, then the result is NaN
• if reg[A] is 0.0, then the result is 0.0
• if reg[A] is –0.0, then the result is –0.0

TICKLONG Load register 0 with millisecond ticks
Opcode: D9

Description: reg[0] = ticks
Load register 0 with the ticks (in milliseconds).

TIMELONG Load register 0 with time value in seconds
Opcode: D8

Micromega Corporation 52 uM-FPU V3 Instruction Reference

Micromega Corporation 53 uM-FPU V3 Instruction Reference

Micromega Corporation 54 uM-FPU V3 Instruction Reference

Operation: reg[0] = time
Description: Load register 0 with the time (in seconds).

TIMESET Set time value in seconds
Opcode: D7

Description: time = reg[0], ticks = 0
The time (in seconds) is set from the value in register 0. The ticks (in milliseconds) is set to zero.

Special cases: • if reg[0] is -1, the timer is turned off.

TRACEOFF Turn debug trace off
Opcode: F8

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, debug tracing will be turned on. The debug terminal will display a trace of
all instructions executed until tracing is turned off.

TRACEON Turn debug trace on
Opcode: F9

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, debug tracing will be turned off.

TRACEREG Display register value in debug trace
Opcode: FB nn where: nn is a register number

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, the value of register nn will be displayed on the debug terminal.

TRACESTR Display debug trace message
Opcode: FA aa...00 where: aa...00 is a zero-terminated string

Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, a message will be displayed on the debug terminal. The zero terminated
ASCII string to be displayed is sent immediately following the opcode.

VERSION Copy the version string to the string buffer
Opcode: F3

Description: The uM-FPU version string is copied to the string buffer. The version code is copied to register 0.
The version code is represented as follows:

7 6 5 4 3 2 1 0Bit

MinorMajor

Bit 4-7 Major Version
Bit 0-3 Minor Version

To read the version string, this instruction is followed by a READSTR instruction.

XSAVE Save register nn to register X
Opcode: 0E nn where: nn is a register number

Micromega Corporation 53 uM-FPU V3 Instruction Reference

Micromega Corporation 54 uM-FPU V3 Instruction Reference

Micromega Corporation 55 uM-FPU V3 Instruction Reference

Description: reg[X] = reg[nn], X = X + 1
Set register X to the value of register nn, and select the next register in sequence as register X.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

XSAVEA Save register A to register X
Opcode: 0F

Description: reg[X] = reg[A], X = X + 1
Set register X to the value of register A, and select the next register in sequence as register X.

Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

Micromega Corporation 54 uM-FPU V3 Instruction Reference

Micromega Corporation 55 uM-FPU V3 Instruction Reference

Micromega Corporation 56 uM-FPU V3 Instruction Reference

Appendix A
uM-FPU V3 Instruction Summary
Instruction Opcode Arguments Returns Description

NOP
SELECTA
SELECTX
CLR
CLRA
CLRX
CLR0
COPY
COPYA
COPYX
LOAD
LOADA
LOADX
ALOADX
XSAVE
XSAVEA
COPY0
COPYI
SWAP
SWAPA
LEFT
RIGHT
FWRITE
FWRITEA
FWRITEX
FWRITE0
FREAD
FREADA
FREADX
FREAD0
ATOF
FTOA
FSET
FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR
FPOW
FCMP

FSET0
FADD0
FSUB0
FSUBR0

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1C
1E
1F
20
21
22
23
24
25
26
27
28

29
2A
2B
2C

nn
nn
nn

mm,nn
nn
nn
nn

nn

nn
bb,nn
nn,mm
nn

nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
nn

aa…00
bb
nn
nn
nn
nn
nn
nn
nn
nn
nn

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

No Operation
Select register A
Select register X
reg[nn] = 0
reg[A] = 0
reg[X] = 0, X = X + 1
reg[nn] = reg[0]
reg[nn] = reg[mm]
reg[nn] = reg[A]
reg[nn] = reg[X], X = X + 1
reg[0] = reg[nn]
reg[0] = reg[A]
reg[0] = reg[X], X = X + 1
reg[A] = reg[X], X = X + 1
reg[X] = reg[nn], X = X + 1
reg[X] = reg[A], X = X + 1
reg[nn] = reg[0]
reg[nn] = long(unsigned byte bb)
Swap reg[nn] and reg[mm]
Swap reg[nn] and reg[A]
Left parenthesis
Right parenthesis
Write 32-bit floating point to reg[nn]
Write 32-bit floating point to reg[A]
Write 32-bit floating point to reg[X]
Write 32-bit floating point to reg[0]
Read 32-bit floating point from reg[nn]
Read 32-bit floating point from reg[A]
Read 32-bit floating point from reg[X]
Read 32-bit floating point from reg[0]
Convert ASCII to floating point
Convert floating point to ASCII
reg[A] = reg[nn]
reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[nn] - reg[A]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[A] = reg[nn] / reg[A]
reg[A] = reg[A] ** reg[nn]
Compare reg[A], reg[nn],
Set floating point status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]
reg[A] = reg[A] - reg[0]
reg[A] = reg[0] - reg[A]

Micromega Corporation 55 uM-FPU V3 Instruction Reference

Micromega Corporation 56 uM-FPU V3 Instruction Reference

Micromega Corporation 57 uM-FPU V3 Instruction Reference

FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

FSETI
FADDI
FSUBI
FSUBRI
FMULI
FDIVI
FDIVRI
FPOWI
FCMPI

FSTATUS
FSTATUSA
FCMP2

FNEG
FABS
FINV
SQRT
ROOT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
DEGREES
RADIANS
FMOD
FLOOR
CEIL
ROUND
FMIN
FMAX

FCNV
FMAC
FMSC
LOADBYTE
LOADUBYTE
LOADWORD
LOADUWORD

2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A

3B
3C
3D

3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

56
57
58
59
5A
5B
5C

bb
bb
bb
bb
bb
bb
bb
bb
bb

nn

nn,mm

nn

nn

nn

nn
nn

bb
nn,mm
nn,mm
bb
bb
b1,b2
b1,b2

reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[A] = reg[0] / reg[A]
reg[A] = reg[A] ** reg[0]
Compare reg[A], reg[0],
Set floating point status
reg[A] = float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = float(bb) - reg[A]
reg[A] = reg[A] * float(bb)
reg[A] = reg[A] / float(bb)
reg[A] = float(bb) / reg[A]
reg[A] = reg[A] ** bb
Compare reg[A], float(bb),
Set floating point status
Set floating point status for reg[nn]
Set floating point status for reg[A]
Compare reg[nn], reg[mm]
Set floating point status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[A] = 1 / reg[A]
reg[A] = sqrt(reg[A])
reg[A] = root(reg[A], reg[nn])
reg[A] = log(reg[A])
reg[A] = log10(reg[A])
reg[A] = exp(reg[A])
reg[A] = exp10(reg[A])
reg[A] = sin(reg[A])
reg[A] = cos(reg[A])
reg[A] = tan(reg[A])
reg[A] = asin(reg[A])
reg[A] = acos(reg[A])
reg[A] = atan(reg[A])
reg[A] = atan2(reg[A], reg[nn])
reg[A] = degrees(reg[A])
reg[A] = radians(reg[A])
reg[A] = reg[A] MOD reg[nn]
reg[A] = floor(reg[A])
reg[A] = ceil(reg[A])
reg[A] = round(reg[A])
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[A] = conversion(bb, reg[A])
reg[A] = reg[A] + (reg[nn] * reg[mm])
reg[A] = reg[A] - (reg[nn] * reg[mm])
reg[0] = float(signed bb)
reg[0] = float(unsigned byte)
reg[0] = float(signed b1*256 + b2)
reg[0] = float(unsigned b1*256 + b2)

Micromega Corporation 56 uM-FPU V3 Instruction Reference

Micromega Corporation 57 uM-FPU V3 Instruction Reference

Micromega Corporation 58 uM-FPU V3 Instruction Reference

LOADE
LOADPI
LOADCON
FLOAT
FIX
FIXR
FRAC
FSPLIT

SELECTMA
SELECTMB
SELECTMC
LOADMA
LOADMB
LOADMC
SAVEMA
SAVEMB
SAVEMC
MOP
FFT
LOADIND
SAVEIND
INDA
INDX
FCALL
EECALL
RET

BRA
BRA,cc
JMP
JMP,cc
TABLE
FTABLE
LTABLE
POLY
GOTO
LWRITE
LWRITEA
LWRITEX

LWRITE0
LREAD
LREADA
LREADX

LREAD0
LREADBYTE
LREADWORD
ATOL
LTOA
LSET

5D
5E
5F
60
61
62
63
64

65
66
67
68
69
6A
6B
6C
6D
6E
6F
7A
7B
7C
7D
7E
7F
80

81
82
83
84
85
86
87
88
89
90
91
92

93
94
95
96

97
98
99
9A
9B
9C

bb

nn,b1,b2
nn,b1,b2
nn,b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
b1,b2
bb
bb
nn
nn
nn
nn
fn
fn

bb
cc,bb
b1,b2
cc,b1,b2
tc,t0…tn
cc,tc,t0…tn
cc,tc,t0…tn
tc,t0…tn
nn
nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

b1,b2,b3,b4
nn

aa…00
bb
nn

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

b1,b2,b3,b4
bb
b1,b2

reg[0] = 2.7182818
reg[0] = 3.1415927
reg[0] = float constant(bb)
reg[A] = float(reg[A])
reg[A] = fix(reg[A])
reg[A] = fix(round(reg[A]))
reg[A] = fraction(reg[A])
reg[A] = integer(reg[A]),
reg[0] = fraction(reg[A])
Select matrix A
Select matrix B
Select matrix C
reg[0] = Matrix A[bb, bb]
reg[0] = Matrix B[bb, bb]
reg[0] = Matrix C[bb, bb]
Matrix A[bb, bb] = reg[A]
Matrix B[bb, bb] = reg[A]
Matrix C[bb, bb] = reg[A]
Matrix/Vector operation
Fast Fourier Transform
reg[0] = reg[reg[nn]]
reg[reg[nn]] = reg[A]
Select register A using value in reg[nn]
Select register X using value in reg[nn]
Call user-defined function in Flash
Call user-defined function in EEPROM
Return from user-defined function
Unconditional branch
Conditional branch
Unconditional jump
Conditional jump
Table lookup
Floating point reverse table lookup
Long integer reverse table lookup
reg[A] = nth order polynomial
Computed GOTO
Write 32-bit long integer to reg[nn]
Write 32-bit long integer to reg[A]
Write 32-bit long integer to reg[X],
X = X + 1
Write 32-bit long integer to reg[0]
Read 32-bit long integer from reg[nn]
Read 32-bit long value from reg[A]
Read 32-bit long integer from reg[X],
X = X + 1
Read 32-bit long integer from reg[0]
Read lower 8 bits of reg[A]
Read lower 16 bits reg[A]
Convert ASCII to long integer
Convert long integer to ASCII
reg[A] = reg[nn]

Micromega Corporation 57 uM-FPU V3 Instruction Reference

Micromega Corporation 58 uM-FPU V3 Instruction Reference

Micromega Corporation 59 uM-FPU V3 Instruction Reference

LADD
LSUB
LMUL
LDIV

LCMP

LUDIV

LUCMP

LTST

LSET0
LADD0
LSUB0
LMUL0
LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

LSETI
LADDI
LSUBI
LMULI
LDIVI

LCMPI

LUDIVI

LUCMPI

LTSTI

LSTATUS
LSTATUSA
LCMP2

LUCMP2

LNEG
LABS
LINC
LDEC
LNOT

9D
9E
9F
A0

A1

A2

A3

A4

A5
A6
A7
A8
A9

AA

AB

AC

AD

AE
AF
B0
B1
B2

B3

B4

B5

B6

B7
B8
B9

BA

BB
BC
BD
BE
BF

nn
nn
nn
nn

nn

nn

nn

nn

bb
bb
bb
bb
bb

bb

bb

bb

bb

nn

nn,mm

nn,mm

nn
nn

reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Signed compare reg[A] and reg[nn],
Set long integer status
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Unsigned compare reg[A] and reg[nn],
Set long integer status
Test reg[A] AND reg[nn],
Set long integer status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]
reg[A] = reg[A] - reg[0]
reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Signed compare reg[A] and reg[0],
set long integer status
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Unsigned compare reg[A] and reg[0],
Set long integer status
Test reg[A] AND reg[0],
Set long integer status
reg[A] = long(bb)
reg[A] = reg[A] + long(bb)
reg[A] = reg[A] - long(bb)
reg[A] = reg[A] * long(bb)
reg[A] = reg[A] / long(bb)
reg[0] = remainder
Signed compare reg[A] - long(bb),
Set long integer status
reg[A] = reg[A] / unsigned long(bb)
reg[0] = remainder
Unsigned compare reg[A] and long(bb),
Set long integer status
Test reg[A] AND long(bb),
Set long integer status
Set long integer status for reg[nn]
Set long integer status for reg[A]
Signed long compare reg[nn], reg[mm]
Set long integer status
Unsigned long compare reg[nn], reg[mm]
Set long integer status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[nn] = reg[nn] + 1, set status
reg[nn] = reg[nn] - 1, set status
reg[A] = NOT reg[A]

Micromega Corporation 58 uM-FPU V3 Instruction Reference

Micromega Corporation 59 uM-FPU V3 Instruction Reference

Micromega Corporation 60 uM-FPU V3 Instruction Reference

LAND
LOR
LXOR
LSHIFT
LMIN
LMAX
LONGBYTE
LONGUBYTE
LONGWORD
LONGUWORD
LONGCON
SETOUT
ADCMODE
ADCTRIG
ADCSCALE
ADCLONG
ADCLOAD

ADCWAIT
TIMESET
TIMELONG
TICKLONG
EESAVE
EESAVEA
EELOAD
EELOADA
EEWRITE
EXTSET
EXTLONG
EXTWAIT
STRSET
STRSEL
STRINS
STRCMP
STRFIND
STRFCHR
STRFIELD
STRTOF
STRTOL
READSEL
SYNC
READSTATUS
READSTR
VERSION
IEEEMODE
PICMODE
CHECKSUM
BREAK
TRACEOFF
TRACEON
TRACESTR

C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CA
D0
D1
D2
D3
D4
D5

D6
D7
D8
D9
DA
DB
DC
DD
DE
E0
E1
E2
E3
E4
E5
E6
E7
E8
E9
EA
EB
EC
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA

nn
nn
nn
nn
nn
nn
bb
bb
b1,b2
b1,b2
bb
bb
bb

ch
ch
ch

nn,ee
ee
nn,ee
ee
ee,bc,b1…bn

aa…00
bb, bb
aa…00
aa…00
aa…00
aa…00
bb

aa…00

aa…00
5C
ss
aa…00

reg[A] = reg[A] AND reg[nn]
reg[A] = reg[A] OR reg[nn]
reg[A] = reg[A] XOR reg[nn]
reg[A] = reg[A] shift reg[nn]
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[0] = long(signed byte bb)
reg[0] = long(unsigned byte bb)
reg[0] = long(signed b1*256 + b2)
reg[0] = long(unsigned b1*256 + b2)
reg[0] = long constant(nn)
Set OUT1 and OUT2 output pins
Set A/D trigger mode
A/D manual trigger
ADCscale[ch] = reg[0]
reg[0] = ADCvalue[ch]
reg[0] =
float(ADCvalue[ch]) * ADCscale[ch]
wait for next A/D sample
time = reg[0]
reg[0] = time (long integer)
reg[0] = ticks (long integer)
EEPROM[ee] = reg[nn]
EEPROM[ee] = reg[A]
reg[nn] = EEPROM[ee]
reg[A] = EEPROM[ee]
Store bytes starting at EEPROM[ee]
external input count = reg[0]
reg[0] = external input counter
wait for next external input
Copy string to string buffer
Set selection point
Insert string at selection point
Compare string with string buffer
Find string and set selection point
Set field separators
Find field and set selection point
Convert string selection to floating point
Convert string selection to long integer
Read string selection
Get synchronization byte
Read status byte
Read string from string buffer
Copy version string to string buffer
Set IEEE mode (default)
Set PIC mode
Calculate checksum for uM-FPU code
Debug breakpoint
Turn debug trace off
Turn debug trace on
Send string to debug trace buffer

Micromega Corporation 59 uM-FPU V3 Instruction Reference

Micromega Corporation 60 uM-FPU V3 Instruction Reference

Notes: Opcode Opcode value in hexadecimal
Arguments Additional data required by instruction
Returns Data returned by instruction
nn register number (0-127)
mm register number (0-127)
fn function number (0-63)
bb 8-bit value
b1,b2 16-bit value (b1 is MSB)
b1,b2,b3,b4 32-bit value (b1 is MSB)
b1...bn string of 8-bit bytes
ss Status byte
cc Condition code
ee EEPROM address slot (0-255)
ch A/D channel number
bc Byte count
t1...tn String of 32-bit table values
aa...00 Zero terminated ASCII string

TRACEREG
READVAR
RESET

FB
FC
FF

nn
nn

Send register value to trace buffer
Read internal register value
Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)

