r uM-FPU V3
N\ Z Instruction Reference

Micromega Corporation 32-bit Floating Point Coprocessor

Introduction

The uM-FPU V3 floating point coprocessor provides instructions for working with 32-bit IEEE 754 compatible
floating point numbers and 32-bit long integer. A typical calculation involves sending instructions and data from the
microcontroller to the uM-FPU, performing the calculation, and transferring the result back to the microcontroller.

Send data and

instructions \

Microcontroller Perform calculations

\ Read results —/

Instructions and data are sent to the uM-FPU using either a SPI or I°C interface. The uM-FPU V3 has a 256 byte
instruction buffer which allows for multiple instructions to sent. This improves the transfer times and allows the
microcontroller to perform other tasks while the uM-FPU is performing a series of calculations. Prior to issuing any
instruction that reads data from the uM-FPU, the Busy/Ready status must be checked to ensure that all instructions
have been executed. If more than 256 bytes are required to specify a sequence of operations, the Busy/Ready status
must be checked at least every 256 bytes to ensure that the instruction buffer does not overflow. See the datasheet for
more detail regarding the SPI or I°C interfaces.

uM-FPU
V3

Instructions consist of an single opcode byte, optionally followed by addition data bytes. A detailed description of
each instruction is provided later in this document, and a summary table is provided in Appendix A.

Micromega Corporation 1 Revised 2006-09-25

uM-FPU Registers

The uM-FPU V3 contains 128 general purpose registers, and 8 temporary registers. All registers are 32-bits and can
be used to store either floating point or long integer values. The general purpose registers are numbered 0 to 63, and
can be directly accessed by the instruction set. The eight temporary registers are used by the LEFT and RIGHT
parenthesis instructions to store temporary results and can’t be accessed directly.

Register 0 is normally only used to store temporary values, since it is modified by many instructions.

General Registers

0 32-bit Register
Register A —p 1 32-bit Register
2 32-bit Register
3 32-bit Register

Register X ——p - .
127 32-bit Register

Temporary Registers

™ 32-bit Register
T8 32-bit Register

Register A
To perform arithmetic operations, one of the uM-FPU registers is selected as register A. Register A can be regarded
as the accumulator or working register. Arithmetic instructions use the value in register A as an operand and store the
results of an operation in register A. Any register can be selected as register A using the SELECTA instruction. For
example,

SELECTA, 5 select register 5 as register A

Arithmetic instructions that only involve one register implicitly refer to register A. For example,
FNEG negate the value in register A

Arithmetic instructions that use two registers will specify the second register as part of the instruction. For example,

FADD, 4 add the value of register 4 to register A

Register X
Register X is used to reference a series of sequential registers. The register X selection is automatically incremented
to the next register in sequence by all instructions that use register X. Any register can be selected as register X
using the SELECTX instruction. For example,

SELECTX, 16 selectregister 16 as register X

CLRX clear register 16 (and increment register X)
CLRX clear register 17 (and increment register X)
CLRX clear register 18 (and increment register X)

Micromega Corporation 2 uM-FPU V3 Instruction Reference

Another example is using the FWRITEX and READX instructions to store and retrieve blocks of data.

In this document the following the following abbreviations are used to refer to registers:

reg[0] register 0
reg[A] register A
reg[X] register X
reg[nn] any one of the 127 general purpose registers

Micromega Corporation 3 uM-FPU V3 Instruction Reference

Floating Point Instructions
The following descriptions provide a quick summary of the floating point instructions. Detailed descriptions are
provided in the next section.

Basic Floating Point Instructions

Each of the basic floating point arithmetic instructions are provided in three different forms as shown in the table
below. The FADD instruction will be used as an example to describe the three different forms of the instructions. The
FADD, nn instruction allows any general purpose register to be added to register A. The register to be added to
register A is specified by the byte following the opcode. The FADDO instruction adds register O to register A and only
requires the opcode. The FADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)
following the opcode is converted to floating point and added to register A. The FADD, nn instruction is most
general, but the FADDO and FADDTI , bb instructions are more efficient for many common operations.

Register nn Register 0 Immediate value Description
FSET,nn FSETO FSETI,bb Set

FADD,nn FADDO FADDI,bb Add

FSUB,nn FSUBO FSUBI,bb Subtract
FSUBR,nn FSUBRO FSUBRI, bb Subtract Reverse
FMUL,nn FMULO FMULI,bb Multiply
FDIV,nn FDIVO FDIVI,bb Divide
FDIVR,nn FDIVRO FDIVRI,bb Divide Reverse
FPOW,nn FPOWO FPOWI,bb Power

FCMP,nn FCMPO FCMPI,bb Compare

Loading Floating Point Values

The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit
floating point values.

FWRITE,nn,bl,b2,b3,b4d Write 32-bit floating point value to reg[nn]

FWRITEA,bl,b2,b3,bd Write 32-bit floating point value to reg[A]
FWRITEX,bl,b2,b3,bd Write 32-bit floating point value to reg[X]
FWRITEO,bl,b2,b3,bd Write 32-bit floating point value to reg[0]

ATOF,aa...00 Convert ASCII string to floating point value and store in reg[0]
LOADBYTE, bb Convert signed byte to floating point and store in reg[0]
LOADUBYTE, bb Convert unsigned byte to floating point and store in reg[0]
LOADWORD, bl,b2 Convert signed 16-bit value to floating point and store in reg[0]
LOADUWORD, bl,b2 Convert unsigned 16-bit value to floating point and store in reg[0]

Reading Floating Point Values
The following instructions are used to read floating point values from the uM-FPU.

FREAD,nn [bl,b2,b3,b4] Return 32-bit floating point value from reg[nn]

FREADA [bl,b2,b3,b4] Return 32-bit floating point value from reg[A]
FREADX [bl,b2,b3,b4] Return 32-bit floating point value from reg[X]
FREADO [bl,b2,b3,b4] Return 32-bit floating point value from reg[0]
FTOA, bb Convert floating point to ASCII string (use READSTR to read string)

Micromega Corporation 4 uM-FPU V3 Instruction Reference

Additional Floating Point Instructions

FSTATUS, nn
FSTATUSA

FCMP2,nn,mm

FNEG
FABS
FINV
SQRT
ROOT, nn
LOG
LOG10
EXP

Matrix Instructions

SELECTMA,nn,bl,b2
SELECTMB, nn,bl,b2
SELECTMC,nn,bl,b2
LOADMA, b1, b2
LOADMB, b1, b2
LOADMC, b1, b2
SAVEMA, bl,b2
SAVEMB, bl,b2
SAVEMC, bl,b2

MOP, bb

EXP10
SIN

Cos

TAN
ASIN
ACOS
ATAN
ATAN2,nn
DEGREES
RADIANS
FMOD

FLOOR FRACTION
CEIL

ROUND
FMIN,nn
FMAX,nn
FCNV, bb
FMAC,nn,mm
FMSC,nn,mm
LOADE
LOADPI
LOADCON, bb

select matrix A at register nn of size b1 rows x b2 columns
select matrix B at register nn of size b1 rows x b2 columns
select matrix C at register nn of size b1 rows x b2 columns
load reg[0] with value from matrix A row b1, column b2
load reg[0] with value from matrix B row b1, column b2
load reg[0] with value from matrix C r row b1, column b2
store reg[A] value to matrix A row b1, column b2

store reg[A] value to matrix A row b1, column b2

store reg[A] value to matrix A row b1, column b2

perform matrix operation

Fast Fourier Transform Instruction
perform Fast Fourier Transform operation

FFT

Conversion Instructions

FLOAT
FIX
FIXR
FSPLIT

Micromega Corporation

convert reg[A] from long integer to floating point

convert reg[A] from floating point to long integer

convert reg[A] from floating point to long integer (with rounding)
reg[A] = integer value, reg[0] = fractional value

uM-FPU V3 Instruction Reference

Long Integer Instructions
The following descriptions provide a quick summary of the long integer instructions. Detailed descriptions are
provided in the next section.

Basic Long Integer Instructions

Each of the basic long integer arithmetic instructions are provided in three different forms as shown in the table
below. The LADD instruction will be used as an example to descibe the three different forms of the instructions. The
LADD, nn instruction allows any general purpose register to be added to register A. The register to be added to
register A is specified by the byte following the opcode. The LADDO instruction adds register O to register A and only
requires the opcode. The LADDB instruction adds a small integer value the register A. The signed byte (-128 to 127)
following the opcode is converted to a long integer and added to register A. The LADD, nn instruction is most
general, but the LADDO and LADDB, bb instructions are more efficient for many common operations.

Register nn Register 0 Immediate value Description
LSET,nn LSETO LSETI,bb Set

LADD, nn LADDO LADDI,bb Add

LSUB, nn LSUBO LSUBI,bb Subtract

LMUL, nn LMULO LMULI,bb Multiply

LDIV,nn LDIVO LDIVI,bb Divide

LCMP, nn LCMPO LCMPI,bb Compare
LUDIV,nn LUDIVO LUDIVI,bb Unsigned Divide
LUCMP, nn LUCMPO LUCMPI, bb Unsigned Compare
LTST,nn LTSTO LTSTI,bb Test Bits

Loading Long Integer Values

The following instructions are used to load data from the microprocessor and store it on the uM-FPU as 32-bit long
integer values.

LWRITE,nn,bl,b2,b3,bd Write 32-bit long integer value to reg[nn]

LWRITEA,bl,b2,b3,b4d Write 32-bit long integer value to reg[A]
LWRITEX,bl,b2,b3,b4d Write 32-bit long integer value to reg[X]
LWRITEO,bl,b2,b3,b4d Write 32-bit long integer value to reg[0]

ATOL,aa...00 Convert ASCII string to long integer value and store in reg[0]
LONGBYTE, bb Convert signed byte to long integer and store in reg[0]
LONGUBYTE, bb Convert unsigned byte to long integer and store in reg[0]
LONGWORD, bl,b2 Convert signed 16-bit value to long integer and store in reg[0]
LONGUWORD, bl, b2 Convert unsigned 16-bit value to long integer and store in reg[0]

Reading Long Integer Values

The following instructions are used to read long integer values from the uM-FPU.

LREAD,nn [bl,b2,b3,b4] returns 32-bit long integer value from reg[nn]

LREADA [bl,b2,b3,b4d] returns 32-bit long integer value from reg[A]

LREADX [bl,b2,b3,b4d] returns 32-bit long integer value from reg[X]

LREADO [bl,b2,b3,b4d] returns 32-bit long integer value from reg[0]

LREADBYTE [bl] returns 8-bit byte from reg[A]

LREADWORD [bl,b2] returns 16-bit value from reg[A]

LTOA, bb convert long integer to ASCII string (use READSTR to read string)

Micromega Corporation 6 uM-FPU V3 Instruction Reference

Additional Long Integer Instructions

LSTATUS,nn LNEG
LSTATUSA LABS
LCMP2,nn,mm LINC,nn
LUCMP2,nn,mm LDEC,nn

Micromega Corporation

LNOT

LAND,nn
LOR,nn
LXOR, nn

LSHIFT,nn
LMIN,nn
LMAX,nn
LONGCON, bb

uM-FPU V3 Instruction Reference

General Purpose Instructions

RESET COPYI,bb,nn LOADIND, nn SYNC

NOP COPYA,nn SAVEIND,nn READSTATUS
SELECTA, nn COPYX, nn INDA READSTR
SELECTX,nn LOAD, nn INDX VERSION
CLR,nn LOADA SWAP,nn,mm IEEEMODE
CLRA LOADX SWAPA,nn PICMODE
CLRX ALOADX LEFT CHECKSUM
COPY, mm, nn XSAVE,nn RIGHT READVAR, bb
COPYO0,nn XSAVEA SETOUT, bb

Special Purpose Instructions

Stored Function Instructions

FCALL, fn Call Flash user-defined function

EECALL, fn Call EPROM user-defined function

RET Return from user-defined functionBRA , bb Unconditional branch
inside user-defined function

BRA,cc,bb Conditional branch inside user-defined function

JMP,bl,b2 Unconditional jump inside user-defined function
JMP,cc,bl,b2 Conditional jump inside user-defined function

GOTO, nn Computed goto

TABLE,tc,t0..tn Table lookup

FTABLE,cc,tc,t0..tn
LTABLE,cc,tc,t0..tn
POLY,tc,t0..tn

Floating point reverse table lookup
Long integer reverse table lookup
N order polynomial

Analog to Digital Conversion Instructions

ADCMODE, bb Select A/D trigger mode

ADCTRIG Manual A/D trigger

ADCSCALE, bb Set A/D floating point scale factor
ADCLONG, bb Get raw long integer A/D reading
ADCLOAD, bb Get scaled floating point A/D reading
ADCWAIT Wait for A/D conversion to complete

Timer Instructions

TIMESET Set timers
TIMELONG Get time in seconds
TICKLONG Get time in microseconds

Micromega Corporation 8 uM-FPU V3 Instruction Reference

EEPROM Instructions

EESAVE,mm,nn
EESAVEA,nn

EELOAD, mm,nn
EELOADA,nn
EEWRITE,nn,bc,bl..bn

External Input Instructions

EXTSET
EXTLONG
EXTWAIT

Save reg[nn] value to EEPROM
Save reg[A] to EEPROM

Load reg[nn] with EEPROM value
Load reg[A] with EEPROM value
Write byte string to EEPROM

Set external input counter
Get external input counter
Wait for next external input pulse

String Manipulation Instructions

STRSET, aa. .00
STRSEL,bb, bb
STRINS,aa..00
STRCMP, aa. .00
STRFIND,aa..00
STRFCHR, aa..00
STRFIELD,bb
STRTOF

STRTOL

READSEL

Debugging Instructions

BREAK

TRACEOFF
TRACEON
TRACESTR,aa..00
TRACEREG, nn

Micromega Corporation

Set string buffer

Select string buffer selection point
Insert substring at

Compare string to current selection
Find string in string buffer

Set field delimiters

Find field

Convert string selection to floating point
Convert string selection to long integer
Read string selection

Debug breakpoint

Turn debug trace off

Turn debug trace on

Display string in debug trace

Display contents of register in debug trace

9 uM-FPU V3 Instruction Reference

uM-FPU V3 Instruction Reference

ACOS
Opcode:

Description:

Special case:

Arc Cosine
4B

reg[A] = acos(reg[A])
Calculates the arc cosine of an angle in the range 0.0 through pi. The initial value is contained in

register A, and the result is returned in register A.

e if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN

ADCLOAD Load scaled A/D value
Opcode: D5 nn where: nn is the A/D channel number
Description: reg[0] = float(ADCchannel[nn]) * ADCscale[nn])
Load register 0 with the reading from channel nn of the A/D converter. The 12-bit value is
converted to floating point, multiplied by a scale value, and stored in register 0.
ADCLONG Load raw A/D value
Opcode: D4 nn where: nn is the A/D channel number
Description: reg[0] = ADCchannel[nn]
Load register 0 with the reading from channel nn of the A/D converter. The 12-bit value is
converted to a long integer and stored in register 0.
ADCMODE Set A/D trigger mode
Opcode: D1 nn where: nn is the trigger mode
Description: Set the trigger mode of the A/D converter. The value nn is interpreted as follows:
Bt 7 6 543 2 10
Trigger | Repeat
Bit 7-4 Trigger Type
0 - disable A/D conversions
1 - manual trigger
2 - external input trigger
3 - timer trigger, the value in register O specifies the period in microseconds.
Bit 3-0 Repeat Count
The number of samples taken for each trigger is equal to the repeat count plus one.
(e.g. a value of 0 will result in one sample per trigger)
ADCSCALE Set scale multiplier for A/D
Opcode: D3 nn where: nn is the A/D channel number
Description: ADCscale[nn] = reg|[0]

Set the scale value for channel nn to the floating point value in register 0. The scale value for all
channels is set to 1.0 at device reset or when the ADCMODE mode is set to disable A/D
conversions.

Micromega Corporation 10

uM-FPU V3 Instruction Reference

ADCTRIG

Trigger an A/D conversion

Opcode: D2

Description: Trigger an A/D conversion. If a conversion is already in progress the trigger is ignored. This is
normally used only when the ADCMODE is set for manual trigger.

ADCWAIT Wait for next A/D sample

Opcode: D6

Description: Wait until the next A/D sample is ready. When ADCMODE is set for manual trigger, this
instruction can be used to wait until the conversion started by the last ADCTRIG is done.
ADCLONG and ADCLOAD automatically wait until the next sample is ready. If the ADCMODE
is set for timer trigger or external input trigger, this instruction will wait until the next full
conversion is completed.

ALOADX Load register A from register X

Opcode: 0D nn where: nn is a register number

Description: reg[A] =reg[X], X=X +1

Special Cases:

Set register A to the value of register X, and increment X to select the next register in sequence.
If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

ASIN
Opcode:

Description:

Special cases:

Arc Sine
4A

reg[A] = asin(reg[A])
Calculates the arc sine of an angle in the range of —pi/2 through pi/2. The initial value is contained
in register A, and the result in returned in register A.

¢ if reg[A] is NaN or its absolute value is greater than 1, then the result is NaN
e if reg[A] is 0.0, then the result is a 0.0
e if reg[A] is —0.0, then the result is —0.0

ATAN
Opcode:

Description:

Special cases:

Arc Tangent
4c

reg[A] = atan(reg[A])
Calculates the arc tangent of an angle in the range of —pi/2 through pi/2. The initial value is
contained in register A, and the result in returned in register A.

e if reg[A] is NaN, then the result is NaN
e if reg[A] is 0.0, then the result is a 0.0
e if reg[A] is —0.0, then the result is —0.0

ATAN2
Opcode:

Description:

Micromega Corporation 11

Arc Tangent (two arguments)
4D nn where: nn is a register number

reg[A] = atan(reg[A] / reg[nn])

Calculates the arc tangent of an angle in the range of —pi/2 through pi/2. The initial value is
determined by dividing the value in register A by the value in register nn, and the result in returned

uM-FPU V3 Instruction Reference

in register A. This instruction is used to convert rectangular coordinates (reg[A], reg[nn]) to polar
coordinates (r, theta). The value of theta is returned in register A.

Special cases: e if reg[A] or reg[nn] is NaN, then the result is NaN
e if reg[A] is 0.0 and reg[nn] > 0, then the result is 0.0
¢ if reg[A] > 0 and finite, and reg[nn] is +inf, then the result is 0.0
¢ if reg[A] is —0.0 and reg[nn] > 0, then the result is —0.0
¢ if reg[A] < 0 and finite, and reg[nn] is +inf, then the result is —0.0
e if reg[A] is 0.0 and reg[nn] < 0, then the result is pi
e if reg[A] > 0 and finite, and reg[nn] is —inf, then the result is pi
e if reg[A] is —0.0, and reg[nn] < 0, then the result is —pi
¢ if reg[A] < 0 and finite, and reg[nn] is —inf, then the result is —pi
e if reg[A] > 0, and reg[nn] is 0.0 or 0.0, then the result is pi/2
e if reg[A] is +inf, and reg[nn] is finite, then the result is pi/2
e if reg[A] <0, and reg[nn] is 0.0 or —0.0, then the result is —pi/2
e if reg[A] is —inf, and reg[nn] is finite, then the result is —pi/2
 if reg[A] is +inf, and reg[nn] is +inf, then the result is pi/4
e if reg[A] is +inf, and reg[nn] is —inf, then the result is 3*pi/4
e if reg[A] is —inf, and reg[nn] is +inf, then the result is —pi/4
e if reg[A] is —inf, and reg[nn] is —inf, then the result is —3*pi/4

ATOF Convert ASCII string to floating point
Opcode: 1E aa...00 where: aa...00 is a zero-terminated ASCII string
Description: Converts a zero terminated ASCII string to a 32-bit floating point number and stores the result in

register 0. The string to convert is sent immediately following the opcode. The string can be
normal number format (e.g. 1.56, -0.5) or exponential format (e.g. 10E6). Conversion will stop at
the first invalid character, but data will continue to be read until a zero terminator is encountered.

Example:
4C 32 2E 35 34 00 (string 2.54) stores the value 2.54 in register O
4C 31 46 33 00 (string 1E3) stores the value 1000.0 in register O
ATOL Convert ASCII string to long integer
Opcode: 9A aa...00 where: aa...00 is a zero-terminated ASCII string
Description: Converts a zero terminated ASCII string to a 32-bit long integer and stores the result in register 0.
The string to convert is sent immediately following the opcode. Conversion will stop at the first
invalid character, but data will continue to be read until a zero terminator is encountered.
Example:
9D 35 30 30 30 30 30 00 (string 500000) stores the value 500000 in register O
9D 35 45 00 (string -5) stores the value -5 in register O
BRA Unconditional branch
Opcode: 81 bb where: bb is the relative address in bytes (-128 to +127)
Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.

Function execution will continue at the address determined by adding the signed byte value to the
address of the byte immediately following the instruction. It has a range of -128 to 127 bytes. The
JMP instruction can be used for addresses that are outside this range. If the new address is outside
the address range of the function, a function return occurs.

Micromega Corporation 12 uM-FPU V3 Instruction Reference

BRA Conditional branch
Opcode: 82 cc, bb where: cc is the test condition
bb is the relative address in bytes (-128 to +127)

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If
the test condition is true, then function execution will continue at the address determined by
adding the signed byte value to the address of the byte immediately following the instruction. It
has a range of -128 to 127 bytes. The JMP instruction can be used for addresses that are outside
this range. If the new address is outside the address range of the function, a function return occurs.

BREAK Debug breakpoint

Opcode: F7

Description: Used in conjunction with the built-in debugger. If the debugger is enabled, a breakpoint occurs and
the debug monitor is entered. If debug mode is not selected, this instruction is ignored.

CEIL Ceiling

Opcode: 52

Description: reg[A] = ceil(reg[A])

Special cases:

Calculates the floating point value equal to the nearest integer that is greater than or equal to the
floating point value in register A. The result is stored in register A.

e if is NaN, then the result is NaN

¢ if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
e if reg[A] is 0.0 or 0.0, then the result is 0.0 or —0.0

e if reg[A] is less than zero but greater than —1.0, then the result is —0.0

CHECKSUM Calculate checksum for uM-FPU code
Opcode: F6
Description: A checksum is calculated for the uM-FPU code and stored in register 0. This is used as a
diagnostic test for confirming the state of a uM-FPU chip.
CLR Clear register
Opcode: 03 nn where: nn is a register number
Description: reg[nn] =0
Set the register value to zero.
CLRO Clear register 0
Opcode: 06
Description: reg[0] =0
Set the value of register O to zero.
CLRA Clear register A
Opcode: 04
Description: reg[A]=0

Set the value of register A to zero.

Micromega Corporation 13 uM-FPU V3 Instruction Reference

CLRX
Opcode:

Description:

Special Cases:

Clear register X
05

reg[X]=0, X=X +1

Set the value of register A to zero, and increment X to select the next register in sequence.
If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

COPY Copy registers
Opcode: 07 mm nn where: mm and nn are register numbers
Description: reg[nn] = reg[mm]
The value of register nn is copied to register mm.
COPYA Copy register A
Opcode: 08 nn where: nn is a register number
Description: reg[nn] = reg[A]
Set register nn to the value of register A.
COPYO Copy register 0
Opcode: 10 nn where: nn is a register number
Description: reg[nn] = reg[0]
Set register nn to the value of register 0.
COPYI Copy Immediate value
Opcode: 11 bb nn where: bb is an unsigned byte value (0 to 255)
nn is a register number
Description: reg[nn] = long(unsigned bb)
The 8-bit unsigned value is converted to a long integer and stored in register nn.
COPYX Copy register X
Opcode: 09 nn where: nn is a register number
Description: reginn] = reg[X], X=X + 1

Special Cases:

Set register nn to the value of register X, and increment X to select the next register in sequence.

If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

CcOos
Opcode:

Description:

Special case:

Cosine
48

reg[A] = cosine(reg[A])
Calculates the cosine of the angle (in radians) in register A and stored the result in register A.

e if reg[A] is NaN or an infinity, then the result is NaN

DEGREES
Opcode:

Micromega Corporation 14

Convert radians to degrees
4E

uM-FPU V3 Instruction Reference

Description:

Special case:

The floating point value in register A is converted from radians to degrees and the result is stored
in register A.

¢ if reg[A] is NaN, then the result is NaN

EECALL
Opcode:

Description:

Special Cases:

Call EEPROM memory user defined function

7F fn where: £n is the function number

The user defined function nn, stored in EEPROM memory, is executed. Up to eight levels of
nesting is supported for function calls. The EEPROM functions can be stored at run-time using
the EEWRITE instruction.

If the selected user function is not defined, register O is set to NaN, and execution continues.

EELOAD Load register nn with value from EEPROM
Opcode: DC nn, ee where: nn is a register number
ee is the EEPROM address slot.
Description: reg[nn] = EEPROM][ee]
Register nn is set to the value in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).
EELOADA Load register A with value from EEPROM
Opcode: DD ee where: ee is the EEPROM address slot
Description: reg[A] = EEPROM[e€]
Register A is set to the value in EEPROM at the address slot specified by ee . EEPROM address
slots are 4 bytes in length (32-bits).
EESAVE Save register nn to EEPROM
Opcode: DA nn ee where: nn is a register number
ee is the EEPROM address slot
Description: EEPROM[mm] = reg[nn]
The value in register A is stored in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).
EESAVEA Save register A to EEPROM
Opcode: DB ee where: ee is the EEPROM address slot
Description: EEPROMI[nN] = reg[A]
The value in register A is stored in EEPROM at the address slot specified by ee. EEPROM address
slots are 4 bytes in length (32-bits).
EEWRITE Write bytes to EEPROM
Opcode: DE ee bc bb...bb
where: ee is the EEPROM address slot
bc is the number of bytes
bb. . .bbis a string of bytes
Description: reg[0] = EEPROM[e€]

Micromega Corporation 15

The number of bytes specified by bc are copied to the EEPROM starting at address slot ee.

uM-FPU V3 Instruction Reference

Address slots are 4 bytes in length (32-bits). Consecutive address slots are used to store the
specified number of bytes. This instruction can be used to store multiple values to the EEPROM
address slots or to dynamically store a user-defined function.

EXP The value e raised to a power
Opcode: 45

Description: reg[A] = exp(reg[A])
Calculates the value of e (2.7182818) raised to the power of the floating point value in register A.
The result is stored in register A.

Special cases: ¢ if reg[A] is NaN, then the result is NaN
e if reg[A] is +infinity or greater than 88, then the result is +infinity
¢ if reg[A] is —infinity or less than -88, then the result is 0.0

EXP10 The value 10 raised to a power
Opcode: 46

Description: reg[A] = exp10(reg[A])
Calculates the value of 10 raised to the power of the floating point value in register A. The result is
stored in A.

Special cases: ¢ if reg[A] is NaN, then the result is NaN
e if reg[A] is +infinity or greater than 38, then the result is +infinity
e if reg[A] is —infinity or less than -38, then the result is 0.0

EXTLONG Load value of external input counter
Opcode: El
Description: reg[0] = external input count

Load register 0 with the external input count.

EXTSET Set value of external input counter
Opcode: EO
Description: external input count = reg[0]

The external input count is set to the value in register 0.

EXTWAIT Wait for next external input pulse

Opcode: E2

Description: Wait for the next external input to occur.
FABS Floating point absolute value
Opcode: 3F

Description: reg[A] = | reg[A] |
Sets the floating value in register A to the absolute value.

Special case: e if reg[A] is NaN, then the result is NaN

Micromega Corporation 16 uM-FPU V3 Instruction Reference

FADD
Opcode:

Description:

Special cases:

Floating point add

21 nn where: nn is a register number
reg[A] = reg[A] + reg[nn]
The floating point value in register nn is added to the floating point value in register A and the

result is stored in register A.

¢ if either value is NaN, then the result is NaN

* if one value is +infinity and the other is —infinity, then the result is NaN

« if one value is +infinity and the other is not —infinity, then the result is +infinity
* if one value is -infinity and the other is not +infinity, then the result is -infinity

FADDO
Opcode:

Description:

Special cases:

Floating point add register 0
2A

reg[A] = reg[A] + reg[0]
The floating point value in register O is added to the floating point value in register A and the result
is stored in register A.

¢ if either value is NaN, then the result is NaN

* if one value is +infinity and the other is —infinity, then the result is NaN

¢ if one value is +infinity and the other is not —infinity, then the result is +infinity
* if one value is -infinity and the other is not +infinity, then the result is -infinity

FADDI
Opcode:

Description:

Special cases:

Floating point add immediate value
33 bb where: bb is a signed byte value (-128 to 127)

reg[A] = reg[A] + float(bb)
The signed byte value is converted to floating point and added to the value in register A and the
result is stored in register A.

e if reg[A] is NaN, then the result is NaN
¢ if reg[A] is +infinity, then the result is +infinity
e if reg[A] is -infinity, then the result is -infinity

FCALL
Opcode:

Description:

Special Cases:

Call Flash memory user defined function

7E fn where: £n is the function number
The user defined function nn, stored in Flash memory, is executed. Up to eight levels of nesting is
supported for function calls. The uM-FPU IDE provides support for programming user defined

functions in Flash memory using the serial debug monitor (see datasheet).

If the selected user function is not defined, register O is set to NaN, and execution continues.

FCMP
Opcode:

Description:

Micromega Corporation 17

Floating point compare

28 nn where: nn is a register number

status = compare(reg[A] - reg[nn])

Compares the floating point value in register A with the value in register nn and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:

uM-FPU V3 Instruction Reference

Bt 7 6 54 3 2 10

Lf-1-1-1-IN]sfz]

Bit2 Not-a-Number Set if either value is not a valid number
Bit 1 Sign Set if reg[A] < reg[nn]

Bit 0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

FCMPO
Opcode:

Description:

Floating point compare register 0
31

status = compare(reg[A] - reg[0])
Compares the floating point value in register A with the value in register O and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bt 7 6 54 3 2 10

Ll-[-[-[-InJs[Z]

Bit2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[A] < reg[0]

Bit0 Zero Set if reg[A] = reg[0]

If neither Bit O or Bit 1 is set, reg[A] > reg[0]

FCMP2
Opcode:

Description:

Floating point compare
3D nn mm where: nn and mm are register numbers

status = compare(reg[nn] - reg[mm])
Compares the floating point value in register nn with the value in register mm and sets the internal
status byte. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bt 7 6 54 3 2 10

Ll-[-[-[-InJs[Z]

Bit2 Not-a-Number Set if either value is not a valid number

Bit 1 Sign Set if reg[A] < reg[nn]

Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

FCMPI
Opcode:

Description:

Floating point compare immediate value
3A bb where: bb is a signed byte value (-128 to 127)

status = compare(reg[A] - float(bb))
The signed byte value is converted to floating point and compared to the floating point value in
register A. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 543210
[-1-[-[-[nfs[Z]

Bit2 Not-a-Number Set if either value is not a valid number

Bit1 Sign Set if reg[A] < float(bb)

Bit0 Zero Set if reg[A] = float(bb)

If neither Bit O or Bit 1 is set, reg[A] > float(bb)

FCNV
Opcode:

Description:

Floating point conversion
56 bb where: bb is an unsigned byte value (0 to 255)

reg[A] = the converted value of reg[A]

Micromega Corporation 18 uM-FPU V3 Instruction Reference

Convert the value in register A using the conversion specified by the byte bb and store the fresult

in register A. The conversions are as follows:

O 00 9 N W~ O

—_ =
— O

LW LW W LW W LW LW W W W N DN DN DN DN N DN D) M o= e = e e e
O 0 1 QNN P W= O VWKW PEAWEN=RO WV W B~ WDN

Fahrenheit to Celsius
Celsius to Fahrenheit

inches to millimeters
millimeters to inches

inches to centimeters
centimeters to inches

inches to meters

meters to inches

feet to meters

meters to feet

yards to meters

meters to yards

miles to kilometers
kilometers to miles

nautical miles to meters
meters to nautical miles
acres to meters’

meters > to acres

ounces to grams

grams to ounces

pounds to kilograms
kilograms to pounds

US gallons to liters

liters to US gallons

UK gallons to liters

liters to UK gallons

US fluid ounces to milliliters
milliliters to US fluid ounces
UK fluid ounces to milliliters
milliliters to UK fluid ounces
calories to Joules

Joules to calories
horsepower to watts

watts to horsepower
atmospheres to kilopascals
kilopascals to atmospheres
mmHg to kilopascals
kilopascals to mmHg
degrees to radians

radians to degrees

Special cases: ¢ if the byte value bb is greater than 39, the value of register A is unchanged.

FDIV Floating point divide

Opcode: 25 nn

where: nn is a register number

Description: reg[A] = reg[A] / reg[nn]
The floating point value in register A is divided by the floating point value in register nn and the

Micromega Corporation

19

uM-FPU V3 Instruction Reference

Special cases:

result is stored in register A.

e if either value is NaN, then the result is NaN

* if both values are zero or both values are infinity, then the result is NaN
e if reg[nn] is zero and reg[A] is not zero, then the result is infinity

¢ if reg[nn] is infinity, then the result is zero

FDIVO
Opcode:

Description:

Special cases:

Floating point divide by register 0
2E

reg[A] = reg[A] / reg[0]
The floating point value in register A is divided by the floating point value in register 0 and the
result is stored in register A.

¢ if either value is NaN, then the result is NaN

* if both values are zero or both values are infinity, then the result is NaN
¢ if reg[nn] is zero and reg[A] is not zero, then the result is infinity

¢ if reg[nn] is infinity, then the result is zero

FDIVI
Opcode:

Description:

Special cases:

Floating point divide by immediate value
37 bb where: bb is a signed byte value (-128 to 127)

reg[A] = reg[A] / float(bb)
The signed byte value is converted to floating point and the value in register A is divided by the
converted value and the result is stored in register A.

e if reg[A] is NaN, then the result is NaN
¢ if both values are zero, then the result is NaN
* if the value bb is zero and reg[A] is not zero, then the result is infinity

FDIVR
Opcode:

Description:

Special cases:

Floating point divide (reversed)
26 nn where: nn is a register number

reg[A] = reg[nn] / reg[A]
The floating point value in register nn is divided by the floating point value in register A and the
result is stored in register A.

¢ if either value is NaN, then the result is NaN

* if both values are zero or both values are infinity, then the result is NaN
e if reg[A] is zero and reg[nn] is not zero, then the result is infinity

¢ if reg[A] is infinity, then the result is zero

FDIVRO
Opcode:

Description:

Special cases:

Micromega Corporation 20

Floating point divide register 0 (reversed)
2F

reg[A] = reg[0] / reg[A]
The floating point value in register O is divided by the floating point value in register A and the

result is stored in register A.

o if either value is NaN, then the result is NaN
« if both values are zero or both values are infinity, then the result is NaN

uM-FPU V3 Instruction Reference

e if reg[A] is zero and reg[0] is not zero, then the result is infinity
¢ if reg[A] is infinity, then the result is zero

FDIVRI
Opcode:

Description:

Special cases:

Floating point divide by immediate value (reversed)
38 bb where: Db is a signed byte value (-128 to 127)

reg[A] = float(bb) / reg[A]
The signed byte value is converted to floating point and divided by the value in register A. The
result is stored in register A.

¢ if reg[A] is NaN, then the result is NaN
¢ if both values are zero, then the result is NaN
¢ if the value reg[A] is zero and float(bb) is not zero, then the result is infinity

FFT Fast Fourier Transform
Opcode: 6F bb where: bb specifies the type of operation
Description: The type of operation is specified as follows:
0 first stage
1 next stage
2 next level
3 next block
+4 pre-processing bit reverse sort
+8 pre-processing for inverse FFT
+16 post-processing for inverse FFT
The data for the FFT instruction is stored in matrix A as a Nx2 matrix, where N must be a power
of two. The data points are specified as complex numbers, with the real part stored in the first
column and the imaginary part stored in the second column. If all data points can be stored in the
matrix (maximum of 64 points if all 128 registers are used), the Fast Fourier Transform can be
calculated with a single instruction. If more data points are required than will fit in the matrix, the
calculation must be done in blocks. The algorithm iteratively writes the next block of data,
executes the FFT instruction for the appropriate stage of the FFT calculation, and reads the data
back to the microcontroller. This proceeds in stages until all data points have been processed. See
application notes for more details.
FINV Floating point inverse
Opcode: 40
Description: reg[A] = 1/ reg[A]

Special cases:

The inverse of the floating point value in register A is stored in register A.

e if reg[A] is NaN, then the result is NaN
e if reg[A] is zero, then the result is infinity
¢ if reg[A] is infinity, then the result is zero

FIX
Opcode:

Description:

Micromega Corporation 21

Convert floating point to long integer
61

reg[A] = fix(reg[A])

uM-FPU V3 Instruction Reference

Special cases:

Converts the floating point value in register A to a long integer value.

e if reg[A] is NaN, then the result is zero

e if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)

¢ if reg[A] is —infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $80000000)

FIXR
Opcode:

Description:

Special cases:

Convert floating point to long integer with rounding
62

reg[A] = fix(round(reg[A]))

Converts the floating point value in register A to a long integer value with rounding.

e if reg[A] is NaN, then the result is zero

e if reg[A] is +infinity or greater than the maximum signed long integer, then the result is the
maximum signed long integer (decimal: 2147483647, hex: $7FFFFFFF)

¢ if reg[A] is —infinity or less than the minimum signed long integer, then the result is the
minimum signed long integer (decimal: -2147483648, hex: $30000000)

FLOAT Convert long integer to floating point
Opcode: 60
Description: reg[A] = float(reg[A])
Converts the long integer value in register A to a floating point value.
FLOOR Floor
Opcode: 51
Description: reg[A] = floor(reg[A])

Special cases:

Calculates the floating point value equal to the nearest integer that is less than or equal to the
floating point value in register A. The result is stored in register A.

e if reg[A] is NaN, then the result is NaN
¢ if reg[A] is +infinity or -infinity, then the result is +infinity or -infinity
e if reg[A] is 0.0 or 0.0, then the result is 0.0 or —0.0

FMAC
Opcode:

Description:

Special cases:

Multiply and add to accumulator
57 nn mm where: nn and mm are a register numbers

reg[A] = reg[A] + (reg[nn] * reg[mm])
The floating point value in register nn is multiplied by the value in register mm and the result is
added to register A.

« if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
« if either values is infinity and the other is nonzero, then the result is infinity

FMAX
Opcode:

Description:

Micromega Corporation 22

Floating point maximum

55 nn where: nn is a register number

reg[A] = max(reg[A], reg[nn])
The maximum floating point value of registers A and register nn is stored in register A.

uM-FPU V3 Instruction Reference

Special cases:

o if either value is NaN, then the result is NaN

FMIN
Opcode:

Description:

Special cases:

Floating point minimum

54 nn where: nn is a register number

reg[A] = min(reg[A], reg[nn])
The minimum floating point value of registers A and register nn is stored in register A.

¢ if either value is NaN, then the result is NaN

FMOD Floating point remainder

Opcode: 50 nn where: nn is a register number

Description: reg[A] = remainder of reg[A] / (reg[nn]
The floating point remainder of the floating point value in register A divided by register nn is
stored in register A.

FMSC Multiply and subtract from accumulator

Opcode: 58 nn mm where: nn and mm are a register numbers

Description: reg[A] = reg[A] - (reg[nn] * reg[mm])

Special cases:

The floating point value in register nn is multiplied by the value in register mm and the result is
subtracted from register A.

« if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
« if either values is infinity and the other is nonzero, then the result is infinity

FMUL
Opcode:

Description:

Special cases:

Floating point multiply

24 nn where: nn is a register number
reg[A] = reg[A] * reg[nn]
The floating point value in register A is multiplied by the value in register nn and the result is

stored in register A.

« if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
« if either values is infinity and the other is nonzero, then the result is infinity

FMULO
Opcode:

Description:

Special cases:

Floating point multiply by register 0
2D

reg[A] = reg[A] * reg[0]
The floating point value in register 0 is multiplied by the value in register nn and the result is
stored in register 0.

¢ if either value is NaN, or one value is zero and the other is infinity, then the result is NaN
* if either values is infinity and the other is nonzero, then the result is infinity

FMULI
Opcode:

Micromega Corporation 23

Floating point multiply by immediate value
36 bb where: bb is a signed byte value (-128 to 127)

uM-FPU V3 Instruction Reference

Description:

Special cases:

reg[A] = reg[A] * float[bb]
The signed byte value is converted to floating point and the value in register A is multiplied by the
converted value and the result is stored in reg[A].

¢ if reg[A] is NaN, then the result is NaN
* if the signed byte is zero and reg[A] is infinity, then the result is NaN

FNEG
Opcode:

Description:

Special case:

Floating point negate
3E

reg[A] = -reg[A]
The negative of the floating point value in register A is stored in register A.

¢ if the value is NaN, then the result is NaN

FPOW
Opcode:

Description:

Special cases:

Floating point power
27 nn where: nn is a register number

reg[A] = reg[A] ** reg[nn]
The floating point value in register A is raised to the power of the floating point value in register
nn and stored in register A.

¢ if reg[nn] is 0.0 or —0.0, then the result is 1.0
e if reg[nn] is 1.0, then the result is the same as the A value
¢ if reg[nn] is NaN, then the result is Nan
¢ if reg[A] is NaN and reg[nn] is nonzero, then the result is NaN
e if I reg[A] I > 1 and reg[nn] is +infinite, then the result is +infinity
e if | reg[A] | < 1 and reg[nn] is -infinite, then the result is +infinity
e if | reg[A] | > 1 and reg[nn] is -infinite, then the result is 0.0
if I reg[A] | < 1 and reg[nn] is +infinite, then the result is 0.0
e if | reg[A] | = 1 and reg[nn] is infinite, then the result is NaN
e if reg[A] is 0.0 and reg[nn] > O, then the result is 0.0
* if reg[A] is +infinity and reg[nn] < 0, then the result is 0.0
e if reg[A] is 0.0 and reg[nn] < 0, then the result is +infinity
e if reg[A] is +infinity and reg[nn] > 0, then the result is +infinity
¢ if reg[A] is -0.0 and reg[nn] > 0 but not a finite odd integer, then the result is 0.0
* if the reg[A] is -infinity and reg[nn] < O but not a finite odd integer, then the result is 0.0
e if reg[A] is -0.0 and the reg[nn] is a positive finite odd integer, then the result is —0.0
e if reg[A] is -infinity and reg[nn] is a negative finite odd integer, then the result is —0.0
e if reg[A] is -0.0 and reg[nn] < O but not a finite odd integer, then the result is +infinity
¢ if reg[A] is -infinity and reg[nn] > O but not a finite odd integer,
then the result is +infinity
e if reg[A] is -0.0 and reg[nn] is a negative finite odd integer, then the result is —infinity
* if reg[A] is -infinity and reg[nn] is a positive finite odd integer,
then the result is —infinity
¢ if reg[A] < 0 and reg[nn] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[nn]
¢ if reg[A] < 0 and reg[nn] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[nn]
¢ if reg[A] < 0 and finite and reg[nn] is finite and not an integer, then the result is NaN

Micromega Corporation 24 uM-FPU V3 Instruction Reference

FPOWO Floating point power by register 0
Opcode: 30 nn where: nn is a register number

Description: reg[A] = reg[A] ** reg[0]
The floating point value in register A is raised to the power of the floating point value in register O
and stored in register A.

Special cases: ¢ if reg[0] is 0.0 or —0.0, then the result is 1.0
¢ if reg[0] is 1.0, then the result is the same as the A value
¢ if reg[0] is NaN, then the result is Nan
e if reg[A] is NaN and reg[0] is nonzero, then the result is NaN
e if | reg[A] I > 1 and reg[0] is +infinite, then the result is +infinity
e if I reg[A] | < 1 and reg[0] is -infinite, then the result is +infinity
e if | reg[A] | > 1 and reg[0] is -infinite, then the result is 0.0
¢ if I reg[A] | < 1 and reg[0] is +infinite, then the result is 0.0
e if I reg[A] I = 1 and reg[0] is infinite, then the result is NaN
e if reg[A] is 0.0 and reg[0] > O, then the result is 0.0
¢ if reg[A] is +infinity and reg[0] < O, then the result is 0.0
¢ if reg[A] is 0.0 and reg[0] < O, then the result is +infinity
e if reg[A] is +infinity and reg[0] > 0O, then the result is +infinity
¢ if reg[A] is -0.0 and reg[0] > O but not a finite odd integer, then the result is 0.0
« if the reg[A] is -infinity and reg[0] < O but not a finite odd integer, then the result is 0.0
e if reg[A] is -0.0 and the reg[0] is a positive finite odd integer, then the result is —0.0
e if reg[A] is -infinity and reg[0] is a negative finite odd integer, then the result is —0.0
¢ if reg[A] is -0.0 and reg[0] < O but not a finite odd integer, then the result is +infinity
e if reg[A] is -infinity and reg[0] > O but not a finite odd integer,
then the result is +infinity
¢ if reg[A] is -0.0 and reg[0] is a negative finite odd integer, then the result is —infinity
e if reg[A] is -infinity and reg[0] is a positive finite odd integer,
then the result is —infinity
¢ if reg[A] < 0 and reg[0] is a finite even integer,
then the result is equal to | reg[A] | to the power of reg[0]
¢ if reg[A] < 0 and reg[0] is a finite odd integer,
then the result is equal to the negative of | reg[A] | to the power of reg[0]
e if reg[A] < 0 and finite and reg[0] is finite and not an integer, then the result is NaN

FPOWI Floating point power by immediate value
Opcode: 39 bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] ** float[bb]
The signed byte value is converted to floating point and the value in register A is raised to the
power of the converted value. The result is stored in register A.

Special cases: ¢ if bb is 0, then the result is 1.0
¢ if bb is 1, then the result is the same as the A value
¢ if reg[A] is NaN and bb is nonzero, then the result is NaN
e if reg[A] is 0.0 and bb > 0, then the result is 0.0
e if reg[A] is +infinity and bb < 0, then the result is 0.0
e if reg[A] is 0.0 and bb < 0, then the result is +infinity
¢ if reg[A] is +infinity and bb > 0, then the result is +infinity

Micromega Corporation 25 uM-FPU V3 Instruction Reference

e if reg[A] is -0.0 and bb > 0 but not an odd integer, then the result is 0.0

« if the reg[A] is -infinity and bb < O but not an odd integer, then the result is 0.0
e if reg[A] is -0.0 and bb is a positive odd integer, then the result is —0.0

e if reg[A] is -infinity and bb is a negative odd integer, then the result is —0.0

e if reg[A] is -0.0 and bb < 0 but not an odd integer, then the result is +infinity

¢ if reg[A] is -infinity and bb > 0 but not an odd integer, then the result is +infinity
e if reg[A] is -0.0 and bb is a negative odd integer, then the result is —infinity

* if reg[A] is -infinity and bb is a positive odd integer, then the result is —infinity
e if reg[A] < 0 and bb is an even integer,

then the result is equal to | reg[A] | to the power of bb

¢ if reg[A] <0 and bb is an odd integer,

then the result is equal to the negative of | reg[A] | to the power of bb

FRAC
Opcode:

Description:

Special cases:

Get fractional part of floating point value
63

Register A is loaded with the fractional part the floating point value in register A. The sign of the
fraction is the same as the sign of the original value.

e if register A is NaN or infinity, then the result is NaN

FREAD Read floating point value

Opcode: 1A nn where: nn is a register number

Returns: bl,b2,b3,b4d where: bl, b2, b3, b4 is floating point value (bl is MSB)

Description: Return 32-bit value from reg[nn]
The floating point value of register nn is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREADO Read floating point value from register 0

Opcode: 1D

Returns: bl,b2,b3,b4 where: bl, b2, b3, b4 is floating point value (bl is MSB)

Description: Return 32-bit value from reg[0]
The floating point value from register O is returned. The four bytes of the 32-bit floating point
value must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREADA Read floating point value from register A

Opcode: 1B

Returns: bl,b2,b3,b4d where: bl, b2, b3, b4 is floating point value (bl is MSB)

Description: Return 32-bit value from reg[A]
The floating point value of register A is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction. If the PIC data format has been selected
(using the PICMODE instruction), the IEEE 754 format floating point value is converted to PIC
format before being sent.

FREADX Read floating point value from register X

Micromega Corporation 26

uM-FPU V3 Instruction Reference

Opcode: 1C
Returns: bl,b2,b3,b4 where: bl, b2, b3, b4 is floating point value (bl is MSB)
Description: Return 32-bit value from reg[X], X = X + 1
The floating point value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit floating point value must be read immediately following this instruction. If
the PIC data format has been selected (using the PICMODE instruction), the IEEE 754 format
floating point value is converted to PIC format before being sent.
FSET Set register A
Opcode: 20 nn where: nn is a register number
Description: reg[A] = reg[nn]
Set register A to the value of register nn.
FSETO Set register A from register 0
Opcode: 29
Description: reg[A] = reg[0]
Set register A to the value of register 0.
FSETI Set register from immediate value
Opcode: 32 bb where: bb is a signed byte value (-128 to 127)
Description: reg[A] = float(bb)
The signed byte value is converted to floating point and stored in register A.
FSPLIT Split integer and fractional portions of floating point value
Opcode: 64
Description: reg[A] = integer(reg[Al]), reg[0] = fraction(reg[A])
The integer portion of the value in register A is stored in register A, and the fractional portion of
the value in register A is stored in register 0. Both values are stored as floating point values.
FSTATUS Get floating point status
Opcode: 3B nn where: nn is a register number
Description: status = status(reg[nn])
Set the internal status byte to the floating point status of the value in register nn. The status byte
can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 54 3 2 10
[I-T- T INs[Z]
Bit3 Infinity Set if the value is an infinity
Bit2 Not-a-Number Set if the value is not a valid number
Bit1 Sign Set if the value is negative
Bit0 Zero Set if the value is zero
FSTATUSA Get floating point status of register A
Opcode: 3C
Description: status = status(reg[A])

Micromega Corporation 27 uM-FPU V3 Instruction Reference

Set the internal status byte to the floating point status of the value in register A. The status byte can
be read with the READSTATUS instruction. It is set as follows:
Bt 7 6 543210

L-1-1-TrIN]s]z]

Bit3 Infinity

Set if the value is an infinity

Bit 2 Not-a-Number Set if the value is not a valid number
Bit1 Sign Set if the value is negative
Bit 0 Zero Set if the value is zero

FSUB
Opcode:

Description:

Special cases:

Floating point subtract

22 nn where: nn is a register number
reg[A] = reg[A] - reg[nn]

The floating point value in register nn is subtracted from the floating point value in register A.

¢ if either value is NaN, then the result is NaN

¢ if both values are infinity and the same sign, then the result is NaN

¢ if reg[A] is +infinity and reg[nn] is not +infinity, then the result is +infinity

* if reg[A] is -infinity and reg[nn] is not -infinity, then the result is -infinity

e if reg[A] is not an infinity and reg[nn] is an infinity, then the result is an infinity of the opposite
sign as reg[nn]

FSUBO
Opcode:

Description:

Special cases:

Floating point subtract register 0
2B

reg[A] = reg[A] - reg[0]
The floating point value in register O is subtracted from the floating point value in register A.

e if either value is NaN, then the result is NaN

¢ if both values are infinity and the same sign, then the result is NaN

* if reg[A] is +infinity and reg[0] is not +infinity, then the result is +infinity

¢ if reg[A] is -infinity and reg[0] is not -infinity, then the result is -infinity

¢ if reg[A] is not an infinity and reg[0] is an infinity, then the result is an infinity of the opposite
sign as reg[0]

FSUBI
Opcode:

Description:

Special cases:

Floating point subtract immediate value
34 bb where: Dbb is a signed byte value (-128 to 127)

reg[A] = reg[A] - float[bb]
The signed byte value is converted to floating point and subtracted from the value in register A.

e if reg[A] is NaN, then the result is NaN
¢ if reg[A] is +infinity, then the result is +infinity
e if reg[A] is -infinity, then the result is -infinity

FSUBR
Opcode:

Description:

Micromega Corporation 28

Floating point subtract (reversed)
23 nn where: nn is a register number

reg[A] = reg[nn] - reg[A]

The floating point value in register A is subtracted from the floating point value in register nn and
the result is stored in register A.

uM-FPU V3 Instruction Reference

Special cases:

o if either value is NaN, then the result is NaN

¢ if both values are infinity and the same sign, then the result is NaN

¢ if reg[nn] is +infinity and reg[A] is not +infinity, then the result is +infinity

¢ if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity

¢ if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite
sign as reg[A]

FSUBRO
Opcode:

Description:

Special cases:

Floating point subtract register 0 (reversed)
2C

reg[A] = reg[0] - reg[A]
The floating point value in register A is subtracted from the floating point value in register O and
the result is stored in register A.

¢ if either value is NaN, then the result is NaN

« if both values are infinity and the same sign, then the result is NaN

¢ if reg[nn] is +infinity and reg[0] is not +infinity, then the result is +infinity

¢ if reg[nn] is -infinity and reg[A] is not -infinity, then the result is -infinity

¢ if reg[nn] is not an infinity and reg[A] is an infinity, then the result is an infinity of the opposite
sign as reg[A]

FSUBRI
Opcode:

Description:

Special cases:

Floating point subtract immediate value (reversed)
35 bb where: bb is a signed byte value (-128 to 127)

reg[A] = float[bb] - reg[A]
The signed byte value is converted to floating point and the value in reg[A] is subtracted from it
and stored in reg[A].

¢ if reg[A] is NaN, then the result is NaN
¢ if reg[A] is +infinity, then the result is +infinity
¢ if reg[A] is -infinity, then the result is -infinity

FTABLE Floating point reverse table lookup
Opcode: 85 cc tc t0...tn where: cc is the test condition
tc is the size of the table
TO...tn are 32-bit floating point values
Description: reg[0] = index of table entry that matches the test condition for reg[A]
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
performs a reverse table lookup on a floating point value. The value in register A is compared to
the values in the table using the test condition. The index number of the first table entry that
satisfied the test condition is returned in register 0. If no entry is found, register O is unchanged.
FTOA Convert floating point value to ASCII string
Opcode: 1F bb where: bb is the format byte
Description: The floating point value in register A is converted to an ASCII string and stored in the string

Micromega Corporation 29

buffer. The byte immediately following the opcode is the format byte and determines the format
of the converted value.

uM-FPU V3 Instruction Reference

If the format byte is zero, as many digits as necessary will be used to represent the number with up
to eight significant digits. Very large or very small numbers are represented in exponential
notation. The length of the displayed value is variable and can be from 3 to 12 characters in length.
The special cases of NaN (Not a Number), +infinity, -infinity, and -0.0 are handled. Examples of
the ASCII strings produced are as follows:

1.0 NaN 0.0
10e20 Infinity -0.0
3.1415927 -Infinity 1.0
-52.333334 -3.5e-5 0.01

If the format byte is non-zero, it is interpreted as a decimal number. The tens digit specifies the
maximum length of the converted string, and the ones digit specifies the number of decimal points.
The maximum number of digits for the formatted conversion is 9, and the maximum number of
decimal points is 6. If the floating point value is too large for the format specified, asterisks will be
stored. If the number of decimal points is zero, no decimal point will be displayed. Examples of
the display format are as follows:

Value in register A Format byte Display format
123.567 61 (6.1) 123.6
123.567 62 (6.2) 123.57
123.567 42 (4.2) * Kk
0.9999 20 (2.0) 1
0.9999 31 (3.1) 1.0

This instruction is normally followed by a READSTR instruction to read the string.

FWRITE Write floating point value
Opcode: 16 nn bl...b4 where: nn is register number
bl...b4 is floating point value (bl is MSB)

Description: reg[nn] = 32-bit floating point value
The floating point value is stored in register nn. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in the register.

FWRITEO Write floating point value to register 0

Opcode: 19 bl...b4 where: bl...b4 is floating point value (b1 is MSB)

Description: reg[0] = 32-bit floating point value
The floating point value is stored in register A. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in register A.

FWRITEA Write floating point value to register A

Opcode: 17 bl...b4 where: bl...b4 is floating point value (b1 is MSB)

Description: reg[A] = 32-bit floating point value
The floating point value is stored in register A. If the PIC data format has been selected (using the
PICMODE instruction), the PIC format floating point value is converted to IEEE 754 format
before being stored in register A.

FWRITEX Write floating point value to register X

Opcode: 18 bl...b4 where: bl...b4 is floating point value (bl is MSB)

Micromega Corporation 30 uM-FPU V3 Instruction Reference

Description:

Special Cases:

reg[A] = 32-bit floating point value, X = X + 1

The floating point value is stored in register X, and X is incremented to the next register. If the PIC
data format has been selected (using the PICMODE instruction), the PIC format floating point
value is converted to IEEE 754 format before being stored in register A.

If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

GOTO Computed GOTO

Opcode: 89 nn where: nn is a register number

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
Function execution will continue at the address determined by adding the register value to the
current function address. If the register value is negative, or the new address is outside the address
range of the function, a function return occurs.

IEEEMODE Select IEEE floating point format

Opcode: F4

Description: Selects the IEEE 754 floating point format for the FREAD, FREADA, FREADX, FWRITE,
FWRITEA, and FWRITEX instructions. This is the default mode on reset and only needs to be
changed if the PICMODE instruction has been used.

INDA Select A using value in register

Opcode: 7C nn where: nn is a register number

Description: A =reg[nn]
Select register A using the value contained in register nn

INDX Select X using value in register

Opcode: 7D nn where: nn is a register number

Description: X =reg[nn]
Select register X using the value contained in register nn.

JMP Unconditional jump

Opcode: 83 bl b2 where: bl,b2 is the function address

Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
Function execution will continue at the address specified. The BRA instruction can be used for
addresses that are within -128 to 127 bytes of the current address. If the new address is outside the
address range of the function, a function return occurs.

JMP Conditional jump

Opcode: 84 cc, bb where: cc is the test condition

b1,b2 is the function address
Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. If

the test condition is true, then function execution will continue at the address specified. The BRA

Micromega Corporation 31 uM-FPU V3 Instruction Reference

instruction can be used for addresses that are within -128 to 127 bytes of the current address. If the
new address is outside the address range of the function, a function return occurs.

LABS Long Integer absolute value
Opcode: BC

Description: reg[A] = | reg[A] |, status = status(reg[A])
The absolute value of the long integer value in register A is stored in register A.

LADD Long integer add
Opcode: 9B nn where: nn is a register number
Description: reg[A] = reg[A] + reg[nn], status = status(reg[A])

The long integer value in register nn is added to register A.

LADDO Long integer add register 0
Opcode: Ab

Description: reg[A] = reg[A] + reg[0], status = status(reg[Al])
The long integer value in register O is added to register A.

LADDI Long integer add immediate value
Opcode: AF bb where: bb is a signed byte value (-128 to 127)

Description: reg[A] = reg[A] + long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and added to register A.

LAND Long integer AND
Opcode: CO0 nn where: nn is a register number

Description: reg[A] = reg[A] AND reg[nn], status = status(reg[A])
The bitwise AND of the values in register A and register nn is stored in register A.

LCMP Long integer compare
Opcode: Al nn where: nn is a register number
Description: status = compare(reg[A] - reg[nn])

Compares the signed long integer value in register A with the value in register nn and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:
Bit 7 6 54 3 2 10

U-1-[-1-1-[s]Z]

Bit 1 Sign Set if reg[A] < reg[nn]

Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LCMPO Long integer compare register 0
Opcode: AA
Description: status = compare(reg[A] - reg[0])

Micromega Corporation 32 uM-FPU V3 Instruction Reference

Compares the signed long integer value in register A with the value in register O and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:
Bit 7 6 543210

Ll-[-[-[-T-[s]Z]

Bit 1 Sign Set if reg[A] < reg[nn]

Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LCMP2 Long integer compare
Opcode: B9 nn mm where: nn and mm are register numbers
Description: status = compare(reg[nn] - reg[mm])

Compares the signed long integer value in register nn with the value in register mm and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:
Bit 7 6 543 210

Ll-1-1-1-1-1s]Z]

Bit 1 Sign Set if reg[A] < reg[nn]

Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LCMPI Long integer compare immediate value
Opcode: B3 bb where: bb is a signed byte value (-128 to 127)
Description: status = compare(reg[A] - long(bb))

The signed byte value is converted to long integer and compared to the signed long integer value
in register A. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 543 210

LL-1-1-1-1-1s]z]
Bit 1 Sign Set if reg[A] < reg[nn]
Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LDEC Long integer decrement
Opcode: BE
Description: reg[nn] = reg[nn] - 1, status = status(reg[nn])

The long integer value in register nn is decremented by one. The long integer status is stored in the
status byte.

LDIV Long integer divide
Opcode: A0 nn where: nn is a register number
Description: regA] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])

The long integer value in register A is divided by the signed value in register nn, and the result is
stored in register A. The remainder is stored in register 0.

Special cases: e if reg[nn] is zero, the result is the largest positive long integer ($7FFFFFFF)

Micromega Corporation 33 uM-FPU V3 Instruction Reference

LDIVO
Opcode:

Description:

Special cases:

Long integer divide by register 0
A9

reg[A] = reg[A] / reg[0], reg[0] = remainder, status = status(reg[A])
The long integer value in register A is divided by the signed value in register 0, and the result is

stored in register A. The remainder is stored in register 0.

« if reg[0] is zero, the result is the largest positive long integer ($7FFFFFFF)

LDIVI
Opcode:

Description:

Special cases:

Long integer divide by immediate value
B2 bb where: bb is a signed byte value (-128 to 127)

reg[A] = reg[A] / long(bb), reg[0] = remainder, status = status(reg[A])
The signed byte value is converted to a long integer and register A is divided by the converted

value. The result is stored in register A. The remainder is stored in register O.

« if the signed byte value is zero, the result is the largest positive long integer ($7FFFFFFF)

LEFT
Opcode:

Description:

Special cases:

Left Parenthesis
14

The left parenthesis command saves the current register A selection, allocates the next temporary
register, and selects the new temporary register as register A. Used together with the right
parenthesis command to allocate temporary registers, and to change the order of a calculation.
There are five temporary registers, so parentheses can be nested up to five levels.

* the maximum number of temporary registers is five. If the maximum number is exceeded, the
value of register A is set to NaN ($7FFFFFFF).

LINC Long integer increment

Opcode: BD

Description: reg[nn] = reg[nn] + 1, status = status(reg[nn])
The long integer value in register nn is incremented by one. The long integer status is stored in the
status byte.

LMAX Floating point maximum

Opcode: C5 nn where: nn is a register number

Description: reg[A] = max(reg[A], reg[nn]), status = status(reg[A])

Special cases:

The maximum signed long integer value of registers A and register nn is stored in register A.

o if either value is NaN, then the result is NaN

LMIN
Opcode:

Description:

Micromega Corporation 34

Floating point minimum

C4 nn where: nn is a register number

reg[A] = min(reg[A], reg[nn]), status = status(reg[A])
The minimum signed long integer value of registers A and register nn is stored in register A.

uM-FPU V3 Instruction Reference

Special cases:

¢ if either value is NaN, then the result is NaN

LMUL Long integer multiply
Opcode: 9F nn where: nn is a register number
Description: reg[A] = reg[A] * reg[nn], status = status(reg[A])
The long integer value in register A is multiplied by register nn and the result is stored in register
A.
LMULO Long integer multiply by register 0
Opcode: A8
Description: reg[A] = reg[A] * reg[0], status = status(reg[A])
The long integer value in register A is multiplied by register O and the result is stored in register A.
LMULI Long integer multiply by immediate value
Opcode: Bl bb where: Db is a signed byte value (-128 to 127)
Description: reg[A] = reg[A] * long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and the long integer value in register A is
multiplied by the converted value. The result is stored in register A.
LNEG Long integer negate
Opcode: BB
Description: reg[A] = -reg[A], status = status(reg[A])
The negative of the long integer value in register A is stored in register A.
LNOT A=NOTA
Opcode: BF
Description: reg[A] = NOT reg[A], status = status(reg[Al)
The bitwise complement of the value in register A is stored in register A.
LOAD reg[0] = reg[nn]
Opcode: 0A nn where: nn is a register number
Description: reg[0] = reg[nn]
Load register 0 with the value of reg[nn].
LOADA Load register 0 with the value of register A
Opcode: 0B
Description: reg[0] = reg[A]
Load register 0 with the value of register A.
LOADBYTE Load register 0 with 8-bit signed value
Opcode: 59 bb where: bb is a signed byte value (-128 to 127)
Description: reg[0] = float(signed bb)
Loads register O with the 8-bit signed integer value converted to floating point value.
LOADCON Load register 0 with floating point constant

Micromega Corporation 35 uM-FPU V3 Instruction Reference

Opcode:

Description:

Special cases:

5F bb where: bb selects the constant
reg[0] = constant[bb]

Loads register 0 with the floating point constant specified by bb as follows:

0 1.0 10°

1 10.0 10!

2 100.0 10°

3 1000.0 10°

4 10000.0 10*

5 100000.0 10°

6 1000000.0 10°

7 10000000.0 10’

8 100000000.0 108

9 1000000000.0 10°

10 = 3.4028235x10°® largest positive finite 32-bit floating point value
11 = 1.4012985x10™% smallest positive non-zero 32-bit floating point value
12 299792458.0 speed of light in vacuum (m/s)

13 6.6742¢e-11 Newtonian constant of gravitation (m*/kg*s?)
14 9.80665 acceleration of gravity

15 9.1093826e-31 electron mass (kg)

16 1.67262171e-27 proton mass (kg)

17 1.67492728e-27 neutron mass (kg)

18 6.0221415e23 Avogadro constant (/mol)

19 1.60217653e-19 elementary charge, electron volt

20 101.325 standard atmosphere (kPa)

« if the byte value bb is greater than 20, register A is set to NaN.

LOADE Load register 0 with floating point value of e (2.7182818)
Opcode: 5D
Description: reg[0] = 2.7182818

Loads register O with the floating point value of e (2.7182818).
LOADIND Load Indirect
Opcode: 7A nn where: nn is a register number
Description: reg[0] = reg[reg[nn]]

Special Cases:

Load register 0 with the value of the register number contained in register nn.
If the value in register nn is not a valid register number, register 0 is set to NaN.

LOADMA
Opcode:

Description:

Special Cases:

Load register 0 with the value from matrix A
68 bb bb where: bb, bb selects the row, column of matrix A

reg[0] = matrix A [bb, bb]
Load register O with a value from matrix A.
If the row or column is out of range, NaN is returned.

LOADMB
Opcode:

Description:

Micromega Corporation 36

Load register 0 with the value from matrix A
69 bb bb where: bb, bb selects the row, column of matrix A

reg[0] = matrix B [bb, bb]

uM-FPU V3 Instruction Reference

Special Cases:

Load register 0 with a value from matrix B.
If the row or column is out of range, NaN is returned.

LOADMC
Opcode:

Description:

Special Cases:

Load register 0 with the value from matrix A
6A bb bb where: bb, bb selects the row, column of matrix A

reg[0] = matrix C [bb, bb]
Load register 0 with a value from matrix C.
If the row or column is out of range, NaN is returned.

LOADPI Load register 0 with value of Pi
Opcode: 5E
Description: reg[0] = 3.1415927

Loads register O with the floating point value of pi (3.1415927).
LOADUBYTE Load register 0 with 8-bit unsigned value
Opcode: 5A bb where: bb is an unsigned byte value (0 to 255)
Description: reg[0] = float(unsigned bb)

The 8-bit unsigned value is converted to floating point and stored in register 0.
LOADUWORD Load register 0 with 16-bit unsigned value
Opcode: 5C bl,b2 where: bl,Db2 is an unsigned word value (0 to 65535)
Description: reg[0] = float(unsigned (b1*256 + b2))

The 16-bit unsigned value is converted to floating point and stored in register 0.
LOADWORD Load register 0 with 16-bit signed value
Opcode: 5B bl,b2 where: bl,b2 is a signed word value (-32768 to 32767)
Description: reg[0] = float (signed(b1*256 + b2))

The 16-bit signed value is converted to floating point and stored in register 0.
LOADX Load register 0 with the value of register X
Opcode: oc
Description: reg[0] = reg[A]

Special Cases:

Load register 0 with the value of register X, and increment X to select the next register in
sequence.

If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

LOG
Opcode:

Description:

Special cases:

Micromega Corporation

Logarithm (base e)
43

reg[A] = log(reg[Al])
Calculates the natural log of the floating point value in register A. The result is stored in register A.
The number e (2.7182818) is the base of the natural system of logarithms.

¢ if the value is NaN or less than zero, then the result is NaN
« if the value is +infinity, then the result is +infinity
¢ if the value is 0.0 or —0.0, then the result is -infinity

37 uM-FPU V3 Instruction Reference

LOG10
Opcode:

Description:

Special cases:

Logarithm (base 10)
44

reg[A] = log10(reg[A])
Calculates the base 10 logarithm of the floating point value in register A. The result is stored in
register A.

¢ if the value is NaN or less than zero, then the result is NaN
* if the value is +infinity, then the result is +infinity
¢ if the value is 0.0 or -0.0, then the result is -infinity

LONGBYTE Load register 0 with 8-bit signed value
Opcode: C6 bb where: Db is a signed byte value (-128 to 127)
Description: reg[0] = long(signed (bb)), status = status(reg[0])

The 8-bit signed value is converted to a long integer and stored in register 0.
LONGCON Load register 0 with long integer constant
Opcode: CA bb where: bb selects the constant
Description: reg[0] = constant[bb], status = status(reg[0])

Special cases:

Loads register O with the long integer constant specified by bb as follows:

0 1 10°

1 10 10!

2 100 10?

3 1,000 103

4 10,000 10*

5 100,000 10°

6 1,000,000 10°

7 10,000,000 107

8 100,000,000 108

9 1,000,000,000 10°

10 2,147,483,647 largest long integer value
11 -2,147,483,648 smallest long integer value

« if the byte value bb is greater than 11, register A is set to zero.

LONGUBYTE
Opcode:

Description:

Load register 0 with 8-bit unsigned value
C7 bb where: Dbb is an unsigned byte value (0 to 255)

reg[0] = long(unsigned (bb)), status = status(reg|[0])
The 8-bit unsigned value is converted to a long integer and stored in register 0.

LONGUWORD Load register 0 with 16-bit unsigned value

Opcode: C9 bl,b2 where: bl,b2 is an unsigned word value (0 to 65535)
Description: reg[0] = long(unsigned (b1*256 + b2)), status = status(reg[0])

The 16-bit unsigned value is converted to a long integer and stored in register O.
LONGWORD Load register 0 with 16-bit signed value
Opcode: C8 bl,b2 where: bl,b2 is asigned word value (-32768 to 32767)

Micromega Corporation

38

uM-FPU V3 Instruction Reference

Description: reg[0] = long(signed (b1*256 + b2)), status = status(reg[0])
The 16-bit signed value is converted to a long integer and stored in register 0.

LOR Long integer OR
Opcode: Cl nn where: nn is a register number

Description: reg[A] = reg[A] OR reg[nn], status = status(reg[A])
The bitwise OR of the values in register A and register nn is stored in register A.

LREAD Read long integer value

Opcode: 94 nn where: nn is a register number

Returns: bl,b2,b3,b4d where: bl, b2, b3, b4 is floating point value (bl is MSB)
Description: Return 32-bit value from reg[nn]

The long integer value of register nn is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREADO Read long integer value from register 0

Opcode: 97

Returns: bl,b2,b3,b4 where: bl, b2, b3, b4 is floating point value (b1 is MSB)
Description: Return 32-bit value from reg[0]

The long integer value of register O is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREADA Read long integer value from register A

Opcode: 95

Returns: bl,b2,b3,b4 where: bl, b2, b3, b4 is floating point value (bl is MSB)
Description: Return 32-bit value from reg[A], status = status(reg[A])

The long integer value of register A is returned. The four bytes of the 32-bit floating point value
must be read immediately following this instruction.

LREADBYTE Read the lower 8-bits of register A

Opcode: 98
Returns: bb where: bb is 8-bit value
Description: Return 8-bit value from reg[A]

Returns the lower 8 bits of register A. The byte containing the 8-bit long integer value must be
read immediately following the instruction.

LREADWORD Read the lower 16-bits of register A

Opcode: 99
Returns: bl,b2 where: bl, b2 is 16-bit value (bl is MSB)
Description: Return 16-bit value from reg[A]

Returns the lower 16 bits of register A. The two bytes containing the 16-bit long integer value
must be read immediately following this instruction.

LREADX Read long integer value from register X
Opcode: 96
Returns: bl,b2,b3,b4d where: bl, b2, b3, b4 is floating point value (bl is MSB)

Micromega Corporation 39 uM-FPU V3 Instruction Reference

Description: Return 32-bit value from reg[X], X = X + 1
The long integer value from register X is returned, and X is incremented to the next register. The
four bytes of the 32-bit floating point value must be read immediately following this instruction.
LSET Set register A
Opcode: 9C nn where: nn is a register number
Description: reg[A] = reg[nn], status = status(reg[A])
Set register A to the value of register nn.
LSETO Set register A from register 0
Opcode: A5
Description: reg[A] = reg[0], status = status(reg[A])
Set register A to the value of register 0.
LSETI Set register from immediate value
Opcode: AE bb where: bb is a signed byte value (-128 to 127)
Description: reg[A] = long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and stored in register A.
LSHIFT A = A shifted by B bit positions
Opcode: C3 bb where: bb is 8-bit value
Description: if reg[nn] > 0, then reg[A] = reg[A] shifted left by bb bits

Special cases:

if reg[nn]< 0, then reg[A] = reg[A] shifted right by bb bits

status = status(reg[nn])

The value in register A is shifted by the number of bit positions specified by the long integer value
in register nn. Register A is shifted left if the value in reg[nn] is positive and right if the value is
negative.

¢ if reg[nn] = 0, no shift occurs
e if reg[nn] > 32 or reg[nn] < -32, then reg[A] =0

LSTATUS Get long integer status
Opcode: B7 nn where: nn is a register number
Description: status = status(reg[nn])
Set the internal status byte to the floating point status of the value in register nn. The status byte
can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 543 210
Ll-1-1-1-1-1s]Z]
Bit1 Sign Set if the value is negative
Bit0 Zero Set if the value is zero
LSTATUSA Get long integer status of register A
Opcode: B8
Description: status = status(reg[A])

Set the internal status byte to the floating point status of the value in register A. The status byte can

Micromega Corporation 40 uM-FPU V3 Instruction Reference

be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 543210

Ll-1-1-1-1-Is]Z]
Bit1 Sign Set if the value is negative
Bit0 Zero Set if the value is zero
LSuUB Long integer subtract
Opcode: 9E nn where: nn is a register number
Description: reg[A] = reg[A] - reg[nn], status = status(reg[A])
The long integer value in register nn is subtracted from register A.
LSUBO Long integer subtract register 0
Opcode: A7
Description: reg[A] = reg[A] - reg[0], status = status(reg[Al])
The long integer value in register O is subtracted from register A.
LSuBI Long integer subtract immediate value
Opcode: B0 bb where: bb is a signed byte value (-128 to 127)
Description: reg[A] = reg[A] - long(bb), status = status(reg[A])
The signed byte value is converted to a long integer and subtracted from register A.
LTABLE Long integer reverse table lookup
Opcode: 87 cc tc t0...tn where: cc is the test condition
tc is the size of the table
TO...tn are 32-bit long integer values
Description: reg[0] = index of table entry that matches the test condition for reg[A]
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
performs a reverse table lookup on a long integer value. The value in register A is compared to the
values in the table using the specified test condition. The index number of the first table entry that
satisfied the test condition is returned in register 0. If no entry is found, register O is unchanged.
LTOA Convert long integer value to ASCII string and store in string buffer
Opcode: 9B bb where: bb is the format byte
Description: stringbuffer = converted string, status = status(reg[A])

The long integer value in register A is converted to an ASCII string and stored in the string buffer.
The byte immediately following the opcode is the format byte and determines the format of the
converted value.

If the format byte is zero, the length of the converted string is variable and can range from 1 to 11
characters in length. Examples of the converted string are as follows:

1

500000

-3598390
If the format byte is non-zero, it is interpreted as a decimal number. A value between 0 and 15
specifies the length of the converted string. The converted string is right justified. If 100 is added
to the format value the value is converted as an unsigned long integer, otherwise it is converted as

Micromega Corporation 41 uM-FPU V3 Instruction Reference

an signed long integer. If the value is larger than the specified width, asterisks are stored. If the
length is specified as zero, the string will be as long as necessary to represent the number.
Examples of the converted string are as follows:

Value in register A Format byte Display format
-1 10 (signed 10) -1
-1 110 (unsigned 10) 4294967295
-1 4 (signed 4) -1

-1 104 (unsigned 4) *kkk

0 4 (signed 4) 0

0 0 (unformatted) 0

1000 6 (signed 6) 1000

The maximum length of the string is 15. This instruction is normally followed by a READSTR
instruction to read the string.

LTST Long integer bit test
Opcode: A4 nn where: nn is a register number
Description: status = status(reg[A] AND reg[nn])
Sets the internal status byte based on the result of a bitwise AND of the values in register A and
register nn. The values of register A and register nn are not changed. The status byte can be read
with the READSTATUS instruction. It is set as follows:
Bit 7 6 543 210
- [-507]
Bit1 Sign Set if the MSB of the result is set
Bit0 Zero Set the result is zero
LTSTO Long integer bit test register 0
Opcode: AD
Description: status = status(reg[A] AND reg[0])
Sets the internal status byte based on the result of a bitwise AND of the value in register A and
register 0. The values of register A and register nn are not changed. The status byte can be read
with the READSTATUS instruction. It is set as follows:
Bit 7 6 543210
Ll-[-[-[-1-[s]Z]
Bit1 Sign Set if the MSB of the result is set
Bit0 Zero Set the result is zero
LTSTI Long integer bit test using immediate value
Opcode: B6 bb where: Db is a signed byte value (0 to 255)
Description: status = status(reg[A] AND long(bb))

Micromega Corporation 42 uM-FPU V3 Instruction Reference

The unsigned byte value is converted to long integer and the internal status byte is set based on the
result of a bitwise AND of the converted value and register A. The values of register A and register

nn are not changed. The status byte can be read with the READSTATUS instruction. It is set as

follows:
Bit 7 6 54 3 210

Ll-1-1-1-[-[s]z]

Bit1 Sign Set if the MSB of the result is set

Bit 0 Zero Set the result is zero

LUCMP Unsigned long integer compare
Opcode: A3 nn where: nn is a register number
Description: status = compare(reg[A] - reg[nn])

Compares the unsigned long integer value in register A with register nn and sets the internal status
byte. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 543210

L-1-1-1-1-]s]Z]
Bit 1 Sign Set if reg[A] < reg[nn]
Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LUCMPO Unsigned long integer compare register 0
Opcode: AC
Description: status = compare(reg[A] - reg[0])

Compares the unsigned long integer value in register A with register O and sets the internal status
byte. The status byte can be read with the READSTATUS instruction. It is set as follows:
Bt 7 6 54 3 210

Ll-1-1-1-1-1s]z]
Bit 1 Sign Set if reg[A] < reg[0]
Bit0 Zero Set if reg[A] = reg[0]

If neither Bit O or Bit 1 is set, reg[A] > reg[0]

LUCMP2 Unsigned long integer compare
Opcode: BA nn mm where: nn and mm are register numbers
Description: status = compare(reg[nn] - reg[mm])

Compares the signed long integer value in register nn with the value in register mm and sets the
internal status byte. The status byte can be read with the READSTATUS instruction. It is set as

follows:
Bit 7 6 54 3 210

Ll-[-[-[-T-s]Z]

Bit 1 Sign Set if reg[A] < reg[nn]

Bit0 Zero Set if reg[A] = reg[nn]

If neither Bit O or Bit 1 is set, reg[A] > reg[nn]

LUCMPI Unsigned long integer compare immediate value
Opcode: B5 bb where: bb is an unsigned byte value (0 to 255)
Description: status = compare(reg[A] - long(bb))

The unsigned byte value is converted to long integer and compared to register A. The status byte
can be read with the READSTATUS instruction. It is set as follows:
Bit 7 6 54 3 210

L-1-[-1-1-[s]Z]
Bit 1 Sign Set if reg[A] < float(bb)
Bit0 Zero Set if reg[A] = float(bb)

If neither Bit O or Bit 1 is set, reg[A] > float(bb)

Micromega Corporation 43 uM-FPU V3 Instruction Reference

LUDIV
Opcode:

Description:

Special cases:

Unsigned long integer divide

A2 nn where: nn is a register number

reg[A] = reg[A] / reg[nn], reg[0] = remainder, status = status(reg[A])
The unsigned long integer value in register A is divided by register nn, and the result is stored in

register A. The remainder is stored in register 0.

« if register nn is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIVO
Opcode:

Description:

Special cases:

Unsigned long integer divide by register 0
AB

reg[A] = reg[A] / reg[0] , reg[0] = remainder, status = status(reg[Al)
The unsigned long integer value in register A is divided by the signed value in register 0, and the

result is stored in register A. The remainder is stored in register 0.

« if register O is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LUDIVI
Opcode:

Description:

Special cases:

Unsigned long integer divide by immediate value
B4 bb where: bb is a signed byte value (0 to 255)

reg[A] = reg[A] / long(bb) , reg[0] = remainder, status = status(reg[A])
The unsigned byte value is converted to a long integer and register A is divided by the converted

value. The result is stored in register A. The remainder is stored in register O.

« if the signed byte value is zero, the result is the largest unsigned long integer ($FFFFFFFF)

LWRITE Write long integer value
Opcode: 90 nn bl,b2,b3,b4 where: nn isregister number
bl, b2, b3, b4 is long integer value (bl is MSB)

Description: reg[nn] = 32-bit long integer value, status = status(reg[nn])

The long integer value is stored in register nn.
LWRITEO Write long integer value to register0
Opcode: 93 bl,b2,b3,b4 where: bl, b2, b3, b4 is long integer value (bl is MSB)
Description: reg[0] = 32-bit long integer value, status = status(reg[0])

The long integer value is stored in register O.
LWRITEA Write long integer value to register A
Opcode: 91 bl,b2,b3,b4d where: bl, b2, b3, b4 is long integer value (bl is MSB)
Description: reg[A] = 32-bit long integer value, status = status(reg[A])

The long integer value is stored in register A.
LWRITEX Write long integer value to register X
Opcode: 92 bl,b2,b3,b4d where: bl, b2, b3, b4 is long integer value (bl is MSB)
Description: reg[X] = 32-bit long integer value, status = status(reg[X]), X = X + 1

Micromega Corporation 44

The long integer value is stored in register X, and X is incremented to the next register.

uM-FPU V3 Instruction Reference

LXOR

Long integer XOR

Opcode: C2 nn where: nn is a register number
Description: reg[A] = reg[A] XOR reg[nn], status = status(reg[A])
The bitwise XOR of the values in register A and register nn is stored in register A.
MOP Matrix Operation
Opcode: 6E bb where: bb is the operation code
Description: The operation code nn selects one of the following operations:
0 Scalar Set. Each element: MA[r,c] = reg[0]
1 Scalar Add. For each element: MA[r,c] = MA[r,c] + reg[0]
2 Scalar Subtract. For each element: MA[r,c] = MA[r,c] + reg[0]
3 Scalar Subtract (reverse). For each element: MA[r,c] = reg[0] - MA[r,c]
4 Scalar Multiply. For each element: MA[r,c] = MA[r,c] * reg[0]
5 Scalar Divide. For each element: MA[r,c] = MA[r,c] / reg[0]
6 Scalar Divide (reverse). For each element: MA[r,c] = reg[0] / MA[r,c]
7 Scalar Power. For each element: MA[r,c] = MA[r,c] ** reg[0]
8 Element-wise Set. Each element: MA[r,c] = MB[r,c]
9 Element-wise Add. For each element: MA[r,c] = MA[r,c] + MBr,c]
10 Element-wise Subtract. For each element: MA[r,c] = MA[r,c] + MBJr,c]
11 Element-wise Subtract (reverse). For each element: MA[r,c] = MBJ[r,c] - MA[r,c]
12 Element-wise Multiply. For each element: MA[r,c] = MA[r,c] * MB|r,c]
13 Element-wise Divide. For each element: MA[r,c] = MA[r,c] / MBJr,c]
14 Element-wise Divide (reverse). For each element: MA[r,c] = MBJr,c] / MA[r,c]
15 Element-wise Power. For each element: MA[r,c] = MA[r,c] ** MBJr,c]
16 Matrix Multiply. Calculate: MA = MB * MC
17 Identity matrix. Set: MA = identity matrix
18 Diagonal matrix. Set: MA = diagonal matrix (reg[0] value stored on diagonal)
19 Transpose. Set: MA = transpose MB
20 Count. Set: reg[0] = count of all elements in MA
21 Sum. Set: reg[0] = sum of all elements in MA
22 Average. Set: reg[0] = average of all elements in MA
23 Minimum. Set: reg[0] = minimum of all elements in MA
24 Maximum Set: reg[0] = maximum of all elements in MA
25 Copy matrix A to matrix B.
26 Copy matrix A to matrix C.
27 Copy matrix B to matrix A.
28 Copy matrix B to matrix C.
29 Copy matrix C to matrix A.
30 Copy matrix C to matrix B.
NOP No operation
Opcode: 00
Description: No operation.
PICMODE Select PIC floating point format
Opcode: F5

Micromega Corporation 45 uM-FPU V3 Instruction Reference

Description:

Selects the alternate PIC floating point mode using by many PIC compilers. All internal data on
the uM-FPU is stored in IEEE 754 format, but when the uM-FPU is in PIC mode an automatic
conversion is done by the FREAD, FREADA, FREADX, FWRITE, FWRITEA, and FWRITEX
instructions so the PIC program can use floating point data in the alternate format. Normally this
instruction would be issued immediately after the reset as part of the initialization code. The
IEEEMODE instruction can be used to revert to standard IEEE 754 floating point mode.

POLY
Opcode:

Description:

Example:

A = nth order polynomial
88 tc t0...tn where: tc is the number of coefficient values

TO. ..tn are 32-bit floating point values

reg[A] = result of nth order polynomial calculation
This instruction is only valid in a user-defined function in Flash memory or EEPROM memory.
The value of the specified polynomial is calculated and stored in register A. The general form of
the polynomial is:

y =4, +A1x1 +A2x2 +. A X

The value of x is the initial value of register A. An n™ order polynomial will have n+1 coefficients
stored in the table. The coefficient values A, A, A,, ... are stored as a series of 32-bit floating

point values (4 bytes) stored in order from A to A,. If a given term in the polynomial is not

needed, a zero must be is stored for that value.
The polynomial 3x + 5 would be represented as follows:
88 02 40 A0 00 00 40 40 00 00
Where: 88 opcode
02 size of the table (order of the polynomial + 1)

40 40 00 00 floating point constant 3.0
40 A0 00 00 floating point constant 5.0

RADIANS
Opcode:

Description:

Special case:

Convert degrees to radians
4F

reg[A] = radians(reg[A])
The floating point value in register A is converted from degrees to radians and the result is stored

in register A.

¢ if the value is NaN, then the result is NaN

READSEL Read string selection

Opcode: EC

Returns: aa...00 where: aa...00 is a zero-terminated string

Description: Returns the current string selection. Data bytes must be read immediately following this
instruction and continue until a zero byte is read. This instruction is typically used after an
STRSEL or STRFIELD instruction.

READSTATUS Return the last status byte

Opcode: F1

Returns: ss where: ss is the status byte

Micromega Corporation 46

uM-FPU V3 Instruction Reference

Description:

The 8-bit internal status byte is returned.

READSTR Read string
Opcode: F2
Returns: aa...00 where: aa...00 is a zero-terminated string
Description: Returns the zero terminated string in the string buffer. Data bytes must be read immediately
following this instruction and continue until a zero byte is read. This instruction is used after
instructions that load the string buffer (e.g. FTOA, LTOA, VERSION).
READVAR Read internal variable
Opcode: FC bb where: bb is index of internal register
Description: reg[0] = internal register value
Sets register O to the current value of one of the internal registers (based on index value passed).
0 A register
1 X register
2 Matrix A register
3 Matrix A rows
4 Matrix A columns
5 Matrix B register
6 Matrix B rows
7 Matrix B columns
8 Matrix C register
9 Matrix C rows
10 Matrix C columns
11 internal mode word
12 last status byte
13 clock ticks per millisecond
14 current length of string buffer
15 string selection starting point
16 string selection length
RESET Reset
Opcode: FF
Description: Nine consecutive FF bytes will cause the uM-FPU to reset. If less then nine consecutive FF bytes
are received, they are treated as NOPs.
RET Return from user-defined function
Opcode: 80
Description: This instruction is only valid in a user-defined function in Flash memory or EEPROM memory. It
causes a return from the current function. Execution will continue with the instruction following
the last function call. This instruction is required as the last instruction of a user-defined function
in EEPROM memory.
RIGHT Right Parenthesis
Opcode: 15

Micromega Corporation 47

uM-FPU V3 Instruction Reference

Description:

Special case:

The right parenthesis command copies the value of register A (the current temporary register) to
register 0. If the right parenthesis is the outermost parenthesis, the register A selection from before
the first left parenthesis is restored, otherwise the previous temporary register is selected as
register. Used together with the left parenthesis command to allocate temporary registers, and to
change the order of a calculation. There are five temporary registers, so parentheses can be nested
up to five levels.

¢ if no left parenthesis is currently outstanding, then the value of register O is set to NaN.
($7FFFFFFF).

ROOT
Opcode:

Description:

Special cases:

Calculate n'" root

42 nn where: nn is a register number

reg[A] = reg[A] ** (1 / reg[nn])

Calculates the n™ root of the floating point value in register A and stores the result in register A.
Where the value n is equal to the floating point value in register nn. It is equivalent to raising A to
the power of (1 / nn).

« see the description of the POWER instruction for the special cases of (1/reg[nn])

¢ if reg[nn] is infinity, then (1 / reg[nn]) is zero

¢ if reg[nn] is zero, then (1 / reg[nn]) is infinity

ROUND
Opcode:

Description:

Special cases:

Floating point Rounding
53

reg[A] = round(reg[Al])
The floating point value equal to the nearest integer to the floating point value in register A is
stored in register A.

¢ if the value is NaN, then the result is NaN
« if the value is +infinity or -infinity, then the result is +infinity or -infinity
¢ if the value is 0.0 or —0.0, then the result is 0.0 or —0.0

SAVEIND
Opcode:

Description:

Special Cases:

Save Indirect

7B nn where: nn is a register number
reg[reg[nn]] = reg[A]

The value of register A is stored in the register whose register number is contained in register nn.
If the value in register nn is not a valid register number, no value is stored.

SAVEMA
Opcode:

Description:

Special Cases:

Save register A value to matrix A
6B bl b2 where: bl selects the row and b2 selects the column of matrix A

matrix A [b1, b2] = reg[A]
Store the register A value to matrix A at the row, column specified.
If the row or column is out of range, no value is stored

SAVEMB
Opcode:

Micromega Corporation 48

Save register A value to matrix B
6C bl b2 where: bl selects the row and b2 selects the column of matrix B

uM-FPU V3 Instruction Reference

Description:

Special Cases:

matrix A [b1, b2] = reg[A]
Store the register A value to matrix B at the row, column specified.
If the row or column is out of range, no value is stored

SAVEMC
Opcode:

Description:

Special Cases:

Save register A value to matrix C
6D bl b2 where: bl selects the row and b2 selects the column of matrix C

matrix A [b1, b2] = reg[A]
Store the register A value to matrix C at the row, column specified.
If the row or column is out of range, no value is stored

SELECTA Select A
Opcode: 01 nn where: nn is a register number
Description: A=nn
The value nn is used to select register A.
SELECTMA Select matrix A
Opcode: 65 nn bl b2 where: nn is a register number
bl is the number of rows, b2 is number of columns
Description: Select matrix A, X = nn
The value nn is used to select a register that is the start of matrix A. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,
FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.
SELECTMB Select matrix B
Opcode: 66 nn bl b2 where: nn is a register number
bl is the number of rows, b2 is number of columns
Description: Select matrix B, X = nn
The value nn is used to select a register that is the start of matrix B. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,
FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.
SELECTMC Select matrix C
Opcode: 67 nn bl b2 where: nn is a register number
bl is the number of rows, b2 is number of columns
Description: Select matrix C, X = nn

Micromega Corporation 49

The value nn is used to select a register that is the start of matrix B. Matrix values are stored in
sequential registers (rows * columns). The upper four bits of the rc value specify the number of
rows, and the lower four bits specify the number of columns (a row or column value of zero is
interpreted as 16). The X register is also set to the first element of the matrix so that the FREADX,

uM-FPU V3 Instruction Reference

FWRITEX, LREADX, LWRITEX, SAVEX, SETX, LOADX instructions can be immediately
used to store values to or retrieve vales from the matrix.

SELECTX Select register X
Opcode: 02 nn where: nn is a register number
Description: X=nn
The value nn is used to select register X.
SETOUT Set output
Opcode: DO nn where: nn is a command byte
Description: Set the OUTO or OUT1 output pin according to the command byte nn as follows:
The upper 4 bits of nn are used to select the output pin:
0-0UTO
1-0UT1
The lower 4 bits of nn specify the action to take:
0 - set output low
1 - set output high
2 - toggle the output to opposite level
3 - set output to high impedance
SIN Sine
Opcode: 47
Description: reg[A] = sin(reg[A])

Special cases:

Calculates the sine of the angle (in radians) in register A and stored the result in register A.

* if Ais NaN or an infinity, then the result is NaN
¢ if A is 0.0, then the result is 0.0
¢ if A is —0.0, then the result is —0.0

SQRT
Opcode:

Description:

Special cases:

Square root
41

reg[A] = sqrt(reg[A])
Calculates the square root of the floating point value in register A and stored the result in register
A.

¢ if the value is NaN or less than zero, then the result is NaN
« if the value is +infinity, then the result is +infinity
¢ if the value is 0.0 or —0.0, then the result is 0.0 or 0.0

STRCMP Compare string with string at selection point

Opcode: E6 aa...00 where: aa...00 is a zero-terminated string

Description: The string is compared with the string at the current selection point and the internal status byte is
set. The READSTATUS instruction can be used to reference the internal status value.

STRFCHR Set field separator characters

Micromega Corporation 50

uM-FPU V3 Instruction Reference

Opcode:

E8 aa...00 where: aa...00 is a zero-terminated string

Description: The string specifies a list of characters to be used as field separators. The default field separator is
a comma.

STRFIELD Find field in string and set selection point

Opcode: E9 aa...00 where: aa...00 is a zero-terminated string

Description: The selection point is set to the specified field. Fields are separated by the characters specified by
the last STRFCHR instruction. If no STRFCHR instruction has been executed, the default field
separator is a comma. If the specified field is not found, the selection point is set to the end of the
string buffer.

STRFIND Find string in the string buffer and set selection point

Opcode: E7 aa...00 where: aa...00 is a zero-terminated string

Description: Insert the string in the string buffer at the current selection point. If the specified string is not
found, the selection point is set to the end of the string buffer.

STRINS Insert string in string buffer at selection point

Opcode: E5 aa...00 where: aa...00 is a zero-terminated string

Description: Insert the string in the string buffer at the current selection point.

STRSEL Set string selection point

Opcode: E4 nn mm where: nn is the character position of the start of the selection

mm is the length of the selection

Description: Set the start of the string selection to character nn and the length of the selection to mm characters.

STRSET Copy string to string buffer

Opcode: E3 aa...00 where: aa...00 isazero-terminated string

Description: Copy the string to the string buffer.

STRTOF Convert string selection to floating point

Opcode: EA

Description: Convert the string at the current selection point to a floating point value and store the result in
register 0.

STRTOL Convert string selection to long integer

Opcode: EB

Description: Convert the string at the current selection point to a long integer value and store the result in
register 0.

SWAP Swap registers

Micromega Corporation 51

uM-FPU V3 Instruction Reference

Opcode:

12 nn mm where: nn and mm are register numbers

Description: tmp = reg[nn], reg[nn] = reg[mm], reg[mm] = tmp
The values of register nn and register mm are swapped.
SWAPA Swap register A
Opcode: 13 nn where: nn is a register number
Description: tmp = reg[nn], reg[nn] = reg[A], reg[A] = tmp
The values of register nn and register A are swapped.
SYNC Synchronization
Opcode: FO
Returns: 5C
Description: A sync character (0x5C) is sent in reply. This instruction is typically used after a reset to verify
communications.
TABLE Table lookup
Opcode: 85 tc t0...tn where: tc is the size of the table
t0...tn are 32-bit floating point or integer values
Description: reg[A] = value from table indexed by reg[0]

Special cases:

This opcode is only valid within a user function stored in the uM-FPU Flash memory or EEPROM
memory. The value of the item in the table, indexed by register 0, is stored in register A. The first
byte after the opcode specifies the size of the table, followed by groups of four bytes representing
the 32-bit values for each item in the table. This instruction can be used to load either floating
point values or long integer values. The long integer value in register O is used as an index into the
table, with the first table entry having index 0.

¢ if reg[0] <=0, then the result is item 0
¢ if reg[0] > maximum size of table, then the result is the last item in the table

TAN
Opcode:

Description:

Special cases:

Tangent
49

reg[A] = tan(reg[A])

Calculates the tangent of the angle (in radians) in register A and stored the result in register A.

e if reg[A] is NaN or an infinity, then the result is NaN
e if reg[A] is 0.0, then the result is 0.0
¢ if reg[A] is 0.0, then the result is —0.0

TICKLONG Load register 0 with millisecond ticks
Opcode: D9
Description: reg[0] = ticks

Load register O with the ticks (in milliseconds).
TIMELONG Load register 0 with time value in seconds
Opcode: D8

Micromega Corporation 52

uM-FPU V3 Instruction Reference

Operation: reg[0] = time

Description: Load register 0 with the time (in seconds).
TIMESET Set time value in seconds

Opcode: D7

Description: time = reg[0], ticks = 0

Special cases:

The time (in seconds) is set from the value in register 0. The ticks (in milliseconds) is set to zero.
¢ if reg[0] is -1, the timer is turned off.

TRACEOFF Turn debug trace off
Opcode: F8
Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, debug tracing will be turned on. The debug terminal will display a trace of
all instructions executed until tracing is turned off.
TRACEON Turn debug trace on
Opcode: F9
Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, debug tracing will be turned off.
TRACEREG Display register value in debug trace
Opcode: FB nn where: nn is a register number
Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, the value of register nn will be displayed on the debug terminal.
TRACESTR Display debug trace message
Opcode: FA aa...00 where: aa...00 is a zero-terminated string
Description: Used with the built-in debugger. If the debugger is not enabled, this instruction is ignored. If the
debugger is enabled, a message will be displayed on the debug terminal. The zero terminated
ASCII string to be displayed is sent immediately following the opcode.
VERSION Copy the version string to the string buffer
Opcode: F3
Description: The uM-FPU version string is copied to the string buffer. The version code is copied to register 0.
The version code is represented as follows:
Bit 7 6 543 210
Major Minor
Bit 4-7 Major Version
Bit 0-3 Minor Version
To read the version string, this instruction is followed by a READSTR instruction.
XSAVE Save register nn to register X
Opcode: OE nn where: nn is a register number

Micromega Corporation 53

uM-FPU V3 Instruction Reference

Description: reg[X] =reg[nn], X =X + 1
Set register X to the value of register nn, and select the next register in sequence as register X.
Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

XSAVEA Save register A to register X
Opcode: OF

Description: reg[X] =reg[A], X=X + 1
Set register X to the value of register A, and select the next register in sequence as register X.
Special Cases: If the instruction is executed when register X is the last register, the last register will remain
selected as the X register.

Micromega Corporation 54 uM-FPU V3 Instruction Reference

Appendix A
uM-FPU V3 Instruction Summary

Instruction Opcode Arguments Returns Description
NOP 00 No Operation
SELECTA 01 | nn Select register A
SELECTX 02 | nn Select register X
CLR 03 | nn reg[nn] =0
CLRA 04 reg[A] =0
CLRX 05 reg[X]=0, X=X+ 1
CLRO 06 reg[nn] = reg[0]
COPY 07 | mm,nn reg[nn] = reg[mm]
COPYA 08 | nn reg[nn] = reg[A]
COPYX 09 | nn reg[nn] =reg[X], X =X + 1
LOAD 0A | nn reg[0] = reg[nn]
LOADA 0B reg[0] = reg[A]
LOADX 0C reg[0] =reg[X], X=X+ 1
ALOADX 0D reg[A] =reg[X], X=X + 1
XSAVE 0E | nn reg[X] =reg[nn], X = X + 1
XSAVEA OF reg[X] = reg[A], X=X + 1
COPYO0 10 | nn reg[nn] = reg[0]
COPYI 11 | bb,nn reg[nn] = long(unsigned byte bb)
SWAP 12 | nn,mm Swap reg[nn] and reg[mm]
SWAPA 13 | nn Swap reg[nn] and reg[A]
LEFT 14 Left parenthesis
RIGHT 15 Right parenthesis
FWRITE 16 | nn,bl,b2,b3,b4d Write 32-bit floating point to reg[nn]
FWRITEA 17 | bl,b2,b3,b4 Write 32-bit floating point to reg[A]
FWRITEX 18 | bl,b2,b3,b4 Write 32-bit floating point to reg[X]
FWRITEOQ 19 | bl,b2,b3,b4d Write 32-bit floating point to reg[0]
FREAD 1A | nn bl,b2,b3,b4 | Read 32-bit floating point from reg[nn]
FREADA 1B bl,b2,b3,b4 | Read 32-bit floating point from reg[A]
FREADX 1C bl,b2,b3,b4 | Read 32-bit floating point from reg[X]
FREADO 1C bl,b2,b3,b4 | Read 32-bit floating point from reg[0]
ATOF 1E | aa..00 Convert ASCII to floating point
FTOA 1F | bb Convert floating point to ASCII
FSET 20 | nn reg[A] = reg[nn]
FADD 21 | nn reg[A] = reg[A] + reg[nn]
FSUB 22 | nn reg[A] = reg[A] - reg[nn]
FSUBR 23 | nn reg[A] = reg[nn] - reg[A]
FMUL 24 | nn reg[A] = reg[A] * reg[nn]
FDIV 25 | nn reg[A] = reg[A] / reg[nn]
FDIVR 26 | nn reg[A] = reg[nn] / reg[A]
FPOW 27 | nn reg[A] = reg[A] ** reg[nn]
FCMP 28 | nn Compare reg[Al], reg[nn],
Set floating point status
FSETO 29 reg[A] = reg[0]
FADDO 2A reg[A] = reg[A] + reg[0]
FSUBO 2B reg[A] = reg[A] - reg[0]
FSUBRO 2C reg[A] = reg[0] - reg[A]

Micromega Corporation 55 uM-FPU V3 Instruction Reference

FMULO 2D reg[A] = reg[A] * reg[0]
FDIVO 2E reg[A] = reg[A] / reg[0]
FDIVRO 2F reg[A] = reg[0] / reg[A]
FPOWO 30 reg[A] = reg[A] ** reg[0]
FCMPO 31 Compare reg[Al], reg[0],

Set floating point status
FSETI 32 | bb reg[A] = float(bb)
FADDI 33 | bb reg[A] = reg[A] - float(bb)
FSUBI 34 | bb reg[A] = reg[A] - float(bb)
FSUBRI 35 | bb reg[A] = float(bb) - reg[A]
FMULI 36 | bb reg[A] = reg[A] * float(bb)
FDIVI 37 | bb reg[A] = reg[A] / float(bb)
FDIVRI 38 | bb reg[A] = float(bb) / reg[A]
FPOWI 39 | bb reg[A] = reg[A] ** bb
FCMPI 3A | bb Compare reg[A], float(bb),

Set floating point status
FSTATUS 3B | nn Set floating point status for reg[nn]
FSTATUSA 3C Set floating point status for reg[A]
FCMP2 3D | nn,mm Compare reg[nn], reg[mm]

Set floating point status
FNEG 3E reg[A] = -reg[A]
FABS 3F reg[A] = | reg[A] |
FINV 40 reg[A] = 1/ reg[A]
SQRT 41 reg[A] = sqrt(reg[A])
ROOT 42 | nn reg[A] = root(reg[A], reg[nn])
LOG 43 reg[A] = log(reg[A])
LOG10 44 reg[A] = log10(reg[A])
EXP 45 reg[A] = exp(reg[Al])
EXP10 46 reg[A] = exp10(reg[A])
SIN 47 reg[A] = sin(reg[A])
Cos 48 reg[A] = cos(reg[A])
TAN 49 reg[A] = tan(reg[A])
ASIN 4A reg[A] = asin(reg[A])
ACOS 4B reg[A] = acos(reg[A])
ATAN 4C reg[A] = atan(reg[A])
ATAN?2 4D | nn reg[A] = atan2(reg[A], reg[nn])
DEGREES AF reg[A] = degrees(reg[A])
RADIANS 4F reg[A] = radians(reg[A])
FMOD 50 | nn reg[A] = reg[A] MOD reg[nn]
FLOOR 51 reg[A] = floor(reg[A])
CEIL 52 reg[A] = ceil(reg[A])
ROUND 53 reg[A] = round(reg[A])
FMIN 54 | nn reg[A] = min(reg[A], reg[nn])
FMAX 55 | nn reg[A] = max(reg[A], reg[nn])
FCNV 56 | bb reg[A] = conversion(bb, reg[A])
FMAC 57 | nn, mm reg[A] = reg[A] + (reg[nn] * reg[mm])
FMSC 58 | nn, mm reg[A] = reg[A] - (reg[nn] * reg[mm])
LOADBYTE 59 | bb reg[0] = float(signed bb)
LOADUBYTE 5A | bb reg[0] = float(unsigned byte)
LOADWORD 5B | bl,b2 reg[0] = float(signed b1*256 + b2)
LOADUWORD 5C | bl,b2 reg[0] = float(unsigned b1*256 + b2)

Micromega Corporation

56

uM-FPU V3 Instruction Reference

LOADE 5D reg[0] = 2.7182818

LOADPI 5E reg[0] = 3.1415927

LOADCON 5F | bb reg[0] = float constant(bb)

FLOAT 60 reg[A] = float(reg[A])

FIX 61 reg[A] = fix(reg[A])

FIXR 62 reg[A] = fix(round(reg[A]))

FRAC 63 reg[A] = fraction(reg[A])

FSPLIT 64 reg[A] = integer(reg[A]),
reg[0] = fraction(reg[A])

SELECTMA 65 | nn,bl,b2 Select matrix A

SELECTMB 66 | nn,bl,b2 Select matrix B

SELECTMC 67 | nn,bl,b2 Select matrix C

LOADMA 68 | bl,b2 reg[0] = Matrix A[bb, bb]

LOADMB 69 | bl,b2 reg[0] = Matrix B[bb, bb]

LOADMC 6A | bl,b2 reg[0] = Matrix C[bb, bb]

SAVEMA 6B | bl,b2 Matrix A[bb, bb] = reg[A]

SAVEMB 6C | bl,b2 Matrix B[bb, bb] = reg[A]

SAVEMC 6D | bl,b2 Matrix C[bb, bb] = reg[A]

MOP 6E | bb Matrix/Vector operation

FFT 6F | bb Fast Fourier Transform

LOADIND 7A | nn reg[0] = reg[reg[nn]]

SAVEIND 7B | nn reg[reg[nn]] = reg[A]

INDA 7C | nn Select register A using value in reg[nn]

INDX 7D | nn Select register X using value in reg[nn]

FCALL 7E | fn Call user-defined function in Flash

EECALL 7F | fn Call user-defined function in EEPROM

RET 80 Return from user-defined function

BRA 81 | bb Unconditional branch

BRA, cc 82 | cc,bb Conditional branch

JMP 83 | bl,b2 Unconditional jump

JMP, cc 84 | cc,bl,b2 Conditional jump

TABLE 85 | tc,t0..tn Table lookup

FTABLE 86 | cc,tc,t0..tn Floating point reverse table lookup

LTABLE 87 | cc,tc,t0..tn Long integer reverse table lookup

POLY 88 | tc,t0..tn reg[A] = nth order polynomial

GOTO 89 | nn Computed GOTO

LWRITE 90 | nn,bl,b2,b3,bd Write 32-bit long integer to reg[nn]

LWRITEA 91 | bl,b2,b3,b4 Write 32-bit long integer to reg[A]

LWRITEX 92 | bl,b2,b3,b4 Write 32-bit long integer to reg[X],
X=X+1

LWRITEO 93 | bl,b2,b3,b4 Write 32-bit long integer to reg[0]

LREAD 94 | nn bl,b2,b3,b4 | Read 32-bit long integer from reg[nn]

LREADA 95 bl,b2,b3,b4 | Read 32-bit long value from reg[A]

LREADX 96 bl,b2,b3,b4 | Read 32-bit long integer from reg[X],
X=X+1

LREADO 97 bl,b2,b3,b4 | Read 32-bit long integer from reg[0]

LREADBYTE 98 bb Read lower 8 bits of reg[A]

LREADWORD 99 bl,b2 Read lower 16 bits reg[A]

ATOL 9A | aa..00 Convert ASCII to long integer

LTOA 9B | bb Convert long integer to ASCII

LSET 9C | nn reg[A] = reg[nn]

Micromega Corporation 57 uM-FPU V3 Instruction Reference

LADD 9D | nn reg[A] = reg[A] + reg[nn]

LSUB 9E | nn reg[A] = reg[A] - reg[nn]

LMUL 9F | nn reg[A] = reg[A] * reg[nn]

LDIV A0 | nn reg[A] = reg[A] / reg[nn]
reg[0] = remainder

LCMP Al | nn Signed compare reg[A] and reg[nn],
Set long integer status

LUDIV A2 | nn reg[A] = reg[A] / reg[nn]
reg[0] = remainder

LUCMP A3 [nn Unsigned compare reg[A] and reg[nn],
Set long integer status

LTST A4 | nn Test reg[A] AND reg[nn],
Set long integer status

LSETO0 A5 reg[A] = reg|[0]

LADDO A6 reg[A] = reg[A] + reg[0]

LSUBO A7 reg[A] = reg[A] - reg[0]

LMULO A8 reg[A] = reg[A] * reg[0]

LDIVO A9 reg[A] = reg[A] / reg[0]
reg[0] = remainder

LCMPO AA Signed compare reg[A] and reg[0],
set long integer status

LUDIVO AB reg[A] = reg[A] / reg[0]
reg[0] = remainder

LUCMPO AC Unsigned compare reg[A] and regl[0],
Set long integer status

LTSTO AD Test reg[A] AND reg[O0],
Set long integer status

LSETI AE | bb reg[A] = long(bb)

LADDI AF | bb reg[A] = reg[A] + long(bb)

LSUBI B0 | bb reg[A] = reg[A] - long(bb)

LMULI Bl | bb reg[A] = reg[A] * long(bb)

LDIVI B2 | bb reg[A] = reg[A] / long(bb)
reg[0] = remainder

LCMPI B3 | bb Signed compare reg[A] - long(bb),
Set long integer status

LUDIVI B4 | bb reg[A] = reg[A] / unsigned long(bb)
reg[0] = remainder

LUCMPI B5 | bb Unsigned compare reg[A] and long(bb),
Set long integer status

LTSTI B6 | bb Test reg[A] AND long(bb),
Set long integer status

LSTATUS B7 | nn Set long integer status for reg[nn]

LSTATUSA B8 Set long integer status for reg[A]

LCMP2 B9 | nn,mm Signed long compare reg[nn], reg[mm]
Set long integer status

LUCMP2 BA | nn,mm Unsigned long compare reg[nn], reg[mm]
Set long integer status

LNEG BB reg[A] = -reg[A]

LABS BC reg[A] = | reg[A] |

LINC BD | nn reg[nn] = reg[hn] + 1, set status

LDEC BE | nn reg[nn] = reg[nn] - 1, set status

LNOT BF reg[A] = NOT reg[A]

Micromega Corporation

58

uM-FPU V3 Instruction Reference

LAND CO | nn reg[A] = reg[A] AND reg[nn]
LOR Cl | nn reg[A] = reg[A] OR reg[nn]
LXOR C2 | nn reg[A] = reg[A] XOR reg[nn]
LSHIFT C3 | nn reg[A] = reg[A] shift reg[nn]
LMIN C4 | nn reg[A] = min(reg[A], reg[nn])
LMAX C5 | nn reg[A] = max(reg[Al, reg[nn])
LONGBYTE C6 | bb reg[0] = long(signed byte bb)
LONGUBYTE C7 | bb reg[0] = long(unsigned byte bb)
LONGWORD C8 | bl,b2 reg[0] = long(signed b1*256 + b2)
LONGUWORD C9 | bl,b2 reg[0] = long(unsigned b1*256 + b2)
LONGCON CA | bb reg[0] = long constant(nn)
SETOUT DO | bb Set OUT1 and OUT2 output pins
ADCMODE D1 | bb Set A/D trigger mode
ADCTRIG D2 A/D manual trigger
ADCSCALE D3 | ch ADCscale[ch] = reg[0]
ADCLONG D4 | ch reg[0] = ADCvalue[ch]
ADCLOAD D5 | ch reg[0] =

float(ADCvalue[ch]) * ADCscale[ch]
ADCWAIT D6 wait for next A/D sample
TIMESET D7 time = reg[0]
TIMELONG D8 reg[0] = time (long integer)
TICKLONG D9 reg[0] = ticks (long integer)
EESAVE DA | nn,ee EEPROM][ee] = reg[nn]
EESAVEA DB | ee EEPROM][ee] = reg[A]
EELOAD DC | nn,ee reg[nn] = EEPROM[e€]
EELOADA DD | ee reg[A] = EEPROM]|ee]
EEWRITE DE | ee,bc,bl..bn Store bytes starting at EEPROM[ee]
EXTSET EO external input count = reg[0]
EXTLONG El reg[0] = external input counter
EXTWAIT E2 wait for next external input
STRSET E3 | aa..00 Copy string to string buffer
STRSEL E4 | bb, bb Set selection point
STRINS E5 | aa..00 Insert string at selection point
STRCMP E6 | aa..00 Compare string with string buffer
STRFIND E7 | aa..00 Find string and set selection point
STRFCHR E8 | aa..00 Set field separators
STRFIELD E9 | bb Find field and set selection point
STRTOF EA Convert string selection to floating point
STRTOL EB Convert string selection to long integer
READSEL EC aa..00 Read string selection
SYNC FO 5C Get synchronization byte
READSTATUS | F1 ss Read status byte
READSTR F2 aa..00 Read string from string buffer
VERSION F3 Copy version string to string buffer
IEEEMODE F4 Set IEEE mode (default)
PICMODE F5 Set PIC mode
CHECKSUM F6 Calculate checksum for uM-FPU code
BREAK F7 Debug breakpoint
TRACEOFF F8 Turn debug trace off
TRACEON F9 Turn debug trace on
TRACESTR FA | aa..00 Send string to debug trace buffer

Micromega Corporation

59

uM-FPU V3 Instruction Reference

TRACEREG FB | nn Send register value to trace buffer
READVAR FC | nn Read internal register value
RESET FF Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)
Notes: Opcode Opcode value in hexadecimal

Arguments Additional data required by instruction

Returns Data returned by instruction

nn register number (0-127)

mm register number (0-127)

fn function number (0-63)

bb 8-bit value

bl,b2 16-bit value (b1 is MSB)

bl,b2,b3,bd 32-bit value (b1 is MSB)

bl...bn string of 8-bit bytes

ss Status byte

cc Condition code

ee EEPROM address slot (0-255)

ch A/D channel number

bec Byte count

tl...tn String of 32-bit table values

aa...00 Zero terminated ASCII string

Micromega Corporation 60

uM-FPU V3 Instruction Reference

