

Micromega Corporation 1 Revised 2005-07-04

Using the uM-FPU V2
Integrated Development
Environment (IDE)

Introduction
The uM-FPU Integrated Development Environment (IDE) software provides an easy-to-use tool for developing
applications using the uM-FPU floating point coprocessor. The IDE runs on Windows 98, NT, ME, 2000 and XP,
and provides support for:

• Generating uM-FPU code for math expressions
• Debugging uM-FPU code
• Storing user-defined functions on the uM-FPU chip

The code generator is a type of application builder, or wizard, that takes standard math expressions and generates the
required uM-FPU code for a selected target. A number of targets are supported, including: Basic Stamp®, Javelin
Stamp™, SX/B Compiler, PICAXE and PICmicro® assembler. Additional targets will be added – check the
Micromega website for up-to-date information. The generated code can be easily copy and pasted into the user’s
microcontroller program in the target development environment. The examples shown in this document use the
BASIC Stamp with an SPI interface. If you are working with a different microcontroller or compiler, the procedures
are the same, but the output code and target development environment will be different.

The IDE uses the built-in debugger on the uM-FPU to provide the user with valuable debugging information such as
uM-FPU instruction traces, and register values, and allows the user to set breakpoints and step through the execution
of uM-FPU instructions.

The IDE supports storing user-defined functions and setting parameters on the uM-FPU chip. This unique capability
can reduce the memory usage on the microcontroller, simplify the interface, and increase the speed of operations.

The IDE takes a source file containing symbol definitions and math expressions. When the source file is compiled,
output code is generated for the target, symbol definitions are stored in the debugger, and any functions that are
defined are stored in a function list – ready to be programmed into Flash memory on the uM-FPU. The source file is
a text file with a default filename extension of fpu.

Debugging and function programming requires a serial connection between the PC running the IDE and the uM-
FPU chip. Code generation doesn’t require a connection. There are various ways of providing a serial connection,
see Application Note 9 – Adding a Serial Connection to the uM-FPU V2 for more information.

This document contains the following section:

Overview of Using the IDE to Generate uM-FPU Code
Tutorial 1 – Generating uM-FPU Code
Tutorial 2 - Debugging uM-FPU Code
Tutorial 3 - Storing User-Defined Functions
Reference Guide for Generating uM-FPU Code
Reference Guide for Debugging
Reference Guide for Storing User-Defined Functions
Reference Guide for Setting uM-FPU Parameters

The tutorials demonstrate how to use the uM-FPU IDE by going through some simple examples. The reference
guides provide detailed information on the features of the IDE.

 Overview

Micromega Corporation 2 Using the uM-FPU V2 IDE

Overview of Using the IDE to Generate uM-FPU Code
The figure below shows the process of developing uM-FPU code using the IDE. The left side of the diagram shows
the normal development process. The user enters a BASIC Stamp program (called demo1.bs2 in this example),
compiles it, and programs the BASIC Stamp using the Parallax BASIC Stamp Editor. The right side of the diagram
shows the additional steps for generating uM-FPU code. The user enters the uM-FPU source file (called demo1.fpu
in this example), compiles it with the IDE, then copies the generated code from the IDE, and pastes it into the
BASIC Stamp program. The program is then compiled and run as usual with the BASIC Stamp Editor.

Developing uM-FPU code
BASIC Stamp example.

The IDE allows you to specify definitions and math expressions using very traditional looking code. It generates the
uM-FPU instructions for you and outputs then in the compiled format of the selected target.

The IDE uses an interface that consists of a main window with tabs to select one of the following windows:

• Source File
• Output
• Debug
• Functions

Clicking the tab will display the associated window. The source file is associated with the leftmost tab, and the name
of the source file is displayed on the tab. If the source file has not been previously saved, the name of the tab will be
untitled. An example of the four window types is shown below.

 Overview

Micromega Corporation 3 Using the uM-FPU V2 IDE

Source File Window
Used to display and edit the source file.

Output Window
Used to display the generated output code.

 Overview

Micromega Corporation 4 Using the uM-FPU V2 IDE

Debug Window
Used for debugging uM-FPU code.

Functions Window
Used to store user-defined functions.

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 5 Using the uM-FPU V2 IDE

Tutorial 1 – Generating uM-FPU Code
This tutorial takes you through the process of generating code for a simple example. Various IDE features are
introduced as we go through the tutorial. For a more complete description of specific features, see the section
entitled Reference Guide for Generating uM-FPU Code.

Starting the uM-FPU IDE
Start the uM-FPU IDE program. The program will open with an empty source file called untitled as shown in the
figure below. The Target pop-up menu is used to select the desired target for the output code. We will use BASIC
Stamp – SPI in this tutorial. The connection status is shown at the lower left of the window. It shows the port, baud
rate and format of the serial connection. A connection is only required for debugging and storing user-defined
functions. You can use the Select Port… item in the Debug or Functions menu to select the desired port or to
select No Connection. The program status is displayed at the bottom of the window, and should now be displaying
No Input.

Source File Window
As displayed at start of program.

A Quick Introduction to Generating Code
The IDE uses predefined symbols for the 16 registers in the uM-FPU. The pre-defined symbols F0, F1, F2, …
F15 are used to specify registers 0 through 15 and define the type as floating point. To add the floating point value
in register 2, to the floating point value in register 1, we would use the following expression:

F1 = F1 + F2

Type this expression into the source file as shown below.

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 6 Using the uM-FPU V2 IDE

Notice that the status line at the bottom of the window now reads Input modified since last compile. This lets you
know that you must compile to get up-to-date output code. Click on the Compile button. The status should change
to Compiled successfully for BASIC Stamp – SPI. If an error is detected, an error message will be displayed in
red. If you get an error message, check that your input matches the figure above, then click the Compile button
again.

Now click the Output tab and the following code should be displayed:

The expression F1 = F1 + F2 has been translated into BASIC Stamp code to select uM-FPU register 1 as the A
register, then add the value of register 2 to the A register. You’ve successfully compiled your first expression.

Defining Symbols
The IDE allows you to define symbols for uM-FPU registers, microcontroller variables and constants. Defining
symbols with meaningful names makes it easier to read and understand expressions.

Registers are defined using the EQU operator and one of the predefined register symbols. For example, the following
statements define the symbol TOTAL as a floating point value in register 1, and COUNT as a byte variable on the
microcontroller.

TOTAL EQU F1
COUNT VAR BYTE

The following statement would generate code to read the value of COUNT from the microcontroller, convert it to
floating point and add it to the TOTAL register.

TOTAL = TOTAL + COUNT

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 7 Using the uM-FPU V2 IDE

A Sample Project
We have a distance measuring device that returns a number of pulses proportional to distance. It can measure
distance from 0 to 30 inches and returns 1000 pulses per inch. We intend to use this device to measure the radius of
a circle, calculate the diameter, circumference and area of the circle, and display the results in units of inches to
three decimal places.

Calculating Radius
The number of pulses returned by the distance measuring device will range from 0 to 30000 (30 inches x 1000
pulses per inch), so we will need to use a word variable to store the value on the microcontroller. Since results will
be displayed in inches, once the distance is loaded to the uM-FPU as a floating point number we’ll divide the value
by 1000.

Enter the following code and Click the button.

distance VAR word
Radius EQU F1

Radius = distance / 1000

The output is shown below:

The Radius register is selected as the A register; the LOADWORD instruction loads the 16-bit value of distance
(from the microcontroller) and converts it to floating point; the FSET instruction sets Radius equal to the distance
value; the FWRITEB instruction loads the floating point value of 1000, and the FDIV instruction divides Radius by
1000.

Copy the Code to your BASIC Stamp Program
Open BASIC Stamp Editor, load the template file umfpu-spi.bs2 and save a copy called tutorial1.bs2.
Copy the register definitions and variable definitions from the uM-FPU IDE and paste them into the tutorial1.bs2
file in the BASIC Stamp Editor. The definitions should be placed after the main definitions comment line.

Since we don’t actually have the sensor described, we will enter a test value at the start of the program. Add the
following line immediately after the label called Main.

distance = 2575

Copy the generated code from the uM-FPU IDE and paste it into tutorial1.bs2.

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 8 Using the uM-FPU V2 IDE

To print the result, add the following lines immediately after the code you copied.

DEBUG CR, "Radius = "
GOSUB Print_Float

Your program should look like the following (not including the uM-FPU support code from the template):

'==
'==================== main definitions ==
'==

'-------------------- uM-FPU Register Definitions --------------------
Radius CON 1 ' uM-FPU register 1

'-------------------- Variable Definitions ---------------------------
distance VAR Word ' signed word variable

'==
'-------------------- initialization --
'==

Reset:
 GOSUB Fpu_Reset ' reset the FPU hardware
 IF status <> SyncChar THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

'==
'-------------------- main routine --
'==

Main:
 distance = 2575

 '--- Radius = distance / 1000
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET,
 FWRITEB, $44, $7A, $00, $00, FDIV]

 DEBUG CR, "Radius = "
 GOSUB Print_Float
 END

Running the Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window.

Notice that 2575 divided by 1000 is displayed as 2.5749997. The Print_Float routine displays the result with no
formatting. Since we want to display the result with 3 decimal places, we will use the Print_FloatFormat
routine. Replace:

GOSUB Print_Float
with

format = 63
GOSUB Print_FloatFormat

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 9 Using the uM-FPU V2 IDE

A format of 63 specifies a width of 6 characters and 3 decimal places. Run the program again. The displayed result
should now be 2.575.

Calculating Diameter, Circumference and Area
Now that we have the initial program, let’s add the calculations for diameter, circumference and area. Add the
following register definitions:

Diameter equ F2
Circumference equ F3
Area equ F4

The area of a circle is twice the radius, so we add the following line to calculate diameter:

Diameter = Radius * 2

The circumference of a circle is equal to the value π (pi) times the diameter. The IDE has a pre-defined symbol for
π, called PI, so you can simple enter the following line to calculate circumference.

Circumference = PI * Diameter

The area of a circle is equal to π times radius2. There is a POWER function that you could use to calculate radius to
the power of 2, but for squared values, it is easier and more efficient to simply multiply the value by itself. Enter the
following line to calculate the area:

Area = PI * Radius * Radius

Finally, we’ll read the Area value back to the microcontroller as a 16-bit integer and print the result. To do this we
add the following definition for the microcontroller variable:

areaIn VAR Word

Adding the following line will convert the Area value to long integer and send the lower 16-bits back to
microcontroller.

areaIn = Area

With these new additions, the tutorial.fpu source file should now read as follows:

distance VAR Word
areaIn VAR Word

Radius equ F1
Diameter equ F2
Circumference equ F3
Area equ F4

Radius = distance / 1000
Diameter = Radius * 2
Circumference = PI * Diameter
Area = PI * Radius * Radius

areaIn = Area

Copy the Code to the BASIC Stamp Program
Compile the new code, copy the generated code from the uM-FPU IDE to the BASIC Stamp program, and add
additional DEBUG statements to print the new results. Your BASIC Stamp program should now look like the
following (not including the uM-FPU support code from the template):

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 10 Using the uM-FPU V2 IDE

'==
'==================== main definitions ==
'==

'-------------------- uM-FPU Register Definitions --------------------
Radius CON 1 ' uM-FPU register 1
Diameter CON 2 ' uM-FPU register 2
Circumference CON 3 ' uM-FPU register 3
Area CON 4 ' uM-FPU register 4

'-------------------- Variable Definitions ---------------------------
distance VAR Word ' signed word variable
areaIn VAR Word ' signed word variable

'==
'-------------------- initialization --
'==

Reset:
 GOSUB Fpu_Reset ' reset the FPU hardware
 IF status <> SyncChar THEN
 DEBUG "uM-FPU not detected."
 END
 ELSE
 GOSUB Print_Version ' display the uM-FPU version number
 DEBUG CR
 ENDIF

'==
'-------------------- main routine --
'==

Main:
 distance = 2575

 '--- Radius = distance / 1000
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET,
 FWRITEB, $44, $7A, $00, $00, FDIV]
 DEBUG CR, "Radius: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Diameter = Radius * 2
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Diameter, FSET+Radius,
 FWRITEB, $40, $00, $00, $00, FMUL]
 DEBUG CR, "Diameter: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Circumference = PI * Diameter
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Circumference, XOP, LOADPI, FSET,
 FMUL+Diameter]
 DEBUG CR, "Circumference: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Area = PI * Radius * Radius
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Area, XOP, LOADPI, FSET, FMUL+Radius,
 FMUL+Radius]
 DEBUG CR, "Area: "
 format = 63
 GOSUB Print_FloatFormat

 Tutorial 1 – Generating uM-FPU Code

Micromega Corporation 11 Using the uM-FPU V2 IDE

 '--- areaIn = Area
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Area]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FIX, SELECTA]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, READWORD]
 SHIFTIN FpuIn, FpuClk, MSBPRE, [areaIn.HIGHBYTE, areaIn.LOWBYTE]
 DEBUG CR, "AreaIn: ", DEC AreaIn

 END

Running the Program
Run the BASIC Stamp program. The following output should be displayed in the terminal window:

Notice that Area is displayed as 20.831, but areaIn is displayed as 20. This is because when a floating point
number is converted to a long integer it is truncated, not rounded. If you prefer the value to be rounded, then use the
ROUND function before converting the number. In the uM-FPU IDE, replace:

areaIn = Area
with:

areaIn = ROUND(area)

Compile the uM-FPU code, copy and paste the new code to the BASIC Stamp program, run the program again. The
following output should now be displayed in the terminal window:

Save the source file
Select the Save command from the File menu, enter the name tutorial1.fpu in the save dialog, and click the Save
button.

This completes the tutorial on generating uM-FPU code. Using the information gained from this tutorial, and the
more detailed information from the reference section, you should now be able to use the IDE to create your own
programs.

 Tutorial 2 – Debugging uM-FPU Code

Micromega Corporation 12 Using the uM-FPU V2 IDE

Tutorial 2 - Debugging uM-FPU Code

The figure below shows the process of debugging uM-FPU code using the IDE. The left side of the diagram shows
the normal BASIC Stamp debug connection using a serial port (COM1 in this exampe) and the terminal window in
the BASIC Stamp Editor. The right side of the diagram shows the additional connection (COM3 in this example)
used to connect the uM-FPU IDE to the built-in debugger on the uM-FPU chip.

Debugging uM-FPU code

To use the debugger, the uM-FPU IDE requires a 57,600 baud serial connection to the uM-FPU configured as 8 data
bits, no parity, and 1 stop bit. The connection is shown below.

For more information on ways to make the serial connection, see Application Note 9 – Adding a Serial Connection
to the uM-FPU V2.

The Trace on Reset parameter determines whether debug tracing is enabled at Reset. Since tracing is disabled by
default, we will select the Set Parameters… item from the Functions menu, and make sure that the Trace on
Reset option is selected. Check that the Set Parameters dialog looks the same as the one shown below, then click
OK. If you get an error message, check all of your connections, reset the uM-FPU, and try again. If the error
persists, you may need to power the uM-FPU chip off and on to ensure a proper Reset.

 Tutorial 2 – Debugging uM-FPU Code

Micromega Corporation 13 Using the uM-FPU V2 IDE

Select the Debug window, and click the button.

Run the program that you developed in the previous tutorial. The trace buffer on the left should display the
information shown below.

Click the button. The register panel on the right should now display the information shown below.

 Tutorial 2 – Debugging uM-FPU Code

Micromega Corporation 14 Using the uM-FPU V2 IDE

Scroll up to the beginning of the trace buffer. You should see a Reset message similar to the following:

--
RESET: 2004-08-07 13:19:31
--

Every time the uM-FPU resets a reset message is displayed.

Compare the instructions in the debug trace to your program. You can see how useful tracing is for checking the
actual sequence of instruction executed by the uM-FPU. Coding errors or logic errors can often be found simply by
examining the trace.

To experiment with breakpoints and single stepping, add the following line to your program at a spot that you want a
breakpoint to occur at.

SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, BREAK]

After adding the breakpoint has been added to your program, run the program again. You should now get a
breakpoint.

Click the button to single step through the code, or the button to continue execution. Check the section
entitled Reference Guide for Debugging for more information.

This completes the tutorial on debugging uM-FPU code. Using the information gained from this tutorial, and more
detailed information from the reference section, you should now be able to use the IDE to debug your own
programs.

 Tutorial 3 – Storing User-Defined Functions

Micromega Corporation 15 Using the uM-FPU V2 IDE

Tutorial 3 - Storing User-Defined Functions

The figure below shows the process of storing user-defined functions. A serial connection (COM3 in this example)
is required to connect the uM-FPU IDE to the built-in debugger on the uM-FPU chip. The uM-FPU debugger
provides support for reading and programming the Flash memory used to store user-defined functions.

Storing User-Defined Functions.

To store user-defined functions, the uM-FPU IDE requires a 57,600 baud serial connection to the uM-FPU
configured as 8 data bits, no parity, and 1 stop bit. The connection is shown below.

For more information on ways to make the serial connection, see Application Note 9 – Adding a Serial Connection
to the uM-FPU V2.

Defining functions
A good way to develop user-defined functions is to first develop and test them as regular code. Once the code is
working correctly, functions can be defined and stored on the uM-FPU chip. In the previous tutorials we developed
and tested code to calculate the diameter, circumference, and area of a circle. We will now store these calculations
as user-defined functions.

The #FUNCTION directive is used to define a function. It specifies the number of the function (0-63) and an
optional name. Any code that appears after the #FUNCTION directive will be stored in the function. The end of a
function occurs at the next #FUNCTION directive, an #END directive, or the end of the source file.

Calling Functions
A function is called by entering an ampersand (@) before the function name or number.
e.g.

@GetDiameter

Modifying the Code for Functions
Open the source file called tutorial1.fpu that you previously saved. Add a #FUNCTION directive before the
diameter, circumference and area calculations, and add an #END directive after the area calculation. Move the radius

 Tutorial 3 – Storing User-Defined Functions

Micromega Corporation 16 Using the uM-FPU V2 IDE

calculation to after the function definitions, and add a call to the three functions. The source code will now look as
follows:

distance VAR Word
areaIn VAR Word

Radius equ F1
Diameter equ F2
Circumference equ F3
Area equ F4

#FUNCTION 1 GetDiameter
Diameter = Radius * 2

#FUNCTION 2 GetCircumference
Circumference = PI * Diameter

#FUNCTION 3 GetArea
Area = PI * Radius * Radius

#END

Radius = distance / 1000
@GetDiameter
@GetCircumference
@GetArea

areaIn = ROUND(area)

Compile and Review the Functions
Click the button, then select the Functions tab. The following window should be displayed:

 Tutorial 3 – Storing User-Defined Functions

Micromega Corporation 17 Using the uM-FPU V2 IDE

The figure above shows that three functions have been defined. The code for each function is displayed in the upper
middle panel. Click on the other functions in the function list to see the code associated with them.

Storing the Functions
Make sure that the Overwrite Stored Functions preference is set to Always (as shown in the figure above).
Click the button to store the user-defined functions on the uM-FPU chip. A status dialog will
be displayed as the uM-FPU functions are programmed into Flash memory. If an error occurs, check the connection,
turn the power to the uM-FPU on and off to ensure that it is reset, and try again.

Running the Program
Copy the generated code from the uM-FPU IDE to the BASIC Stamp program, and replace the diameter,
circumference and area calculations with function calls. The main routine in your BASIC Stamp program should
now look like the following:

Main:
 distance = 2575

 '--- Radius = distance / 1000
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Radius,
 LOADWORD, distance.HIGHBYTE, distance.LOWBYTE, FSET,
 FWRITEB, $44, $7A, $00, $00, FDIV]
 DEBUG CR, "Radius: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Diameter = Radius * 2
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, FUNCTION+1]
 DEBUG CR, "Diameter: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Circumference = PI * Diameter
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, FUNCTION+2]
 DEBUG CR, "Circumference: "
 format = 63
 GOSUB Print_FloatFormat

 '--- Area = PI * Radius * Radius
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, FUNCTION+3]
 DEBUG CR, "Area: "
 format = 63
 GOSUB Print_FloatFormat

 '--- areaIn = Area
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [Area]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [FIX, SELECTA]
 GOSUB Fpu_Wait
 SHIFTOUT FpuOut, FpuClk, MSBFIRST, [XOP, READWORD]
 SHIFTIN FpuIn, FpuClk, MSBPRE, [areaIn.HIGHBYTE, areaIn.LOWBYTE]
 DEBUG CR, "AreaIn: ", DEC AreaIn

 END

Save the source file as Tutorial2.fpu and save the BASIC Stamp program Tutorial2.bs2, then run the program. The
following output should be displayed in the terminal window:

 Tutorial 3 – Storing User-Defined Functions

Micromega Corporation 18 Using the uM-FPU V2 IDE

Note: If the user-defined functions have not been stored properly, the output will look like the
following:

Calling an undefined functions has no effect, so the A register remains unchanged after the
Radius calculation, and the same value prints out for each Print_Format call.

This completes the tutorial on storing user-defined functions. Using the information gained from this tutorial, and
the more detailed information in the reference section, you should now be able to define and store your own
functions with the IDE.

 Reference Guide for Generating uM-FPU Code

Micromega Corporation 19 Using the uM-FPU V2 IDE

Reference Guide for Generating uM-FPU Code
The source file is used to enter symbol definitions and math expressions to implement floating point or long
integer calculations. Expression can contain uM-FPU registers, microcontroller variables, constants, math
operators, math functions and parentheses.

Order of Evaluation
Expressions evaluate from left to right with no operator precedence.

F1 = F2 + F3 * F4
would result in F1 being set to the value of F2 added to F3 then multiply by F4.

Parentheses are used to change the order of operations. For example,

F1 = F2 + (F3 * F4)
would result in F1 being set to the value of F2 added to the value of F3 multiplied by F4.

Multiple constant values entered one after another are automatically reduced to a single constant value in the
expression. For example,

F1 = F2 * 5 / 2
would result in F1 being set to the value F2 multiplied by 2.5.

If you don’t want constants to be reduced, you need to use parentheses. The familiar expression for converting
temperature from Celsius to Fahrenheit would be entered as:

F1 = (F2 * 9 / 5) + 32
If no parentheses were used, the expression would be calculated as F2 multiplied by 33.8, which would be
incorrect.

The code generator often adds one level of parenthesis, so parentheses in expressions should only be nested up
to four levels deep (including the parentheses used for functions).

Pre-defined Register Names
The following register definitions pre-defined:

F0, F1, F2, … F15 specifies that register 0 to 15 contains a floating point value
L0, L1, L2, … L15 specifies that register 0 to 15 contains a long integer value
U0, U1, U2, … U15 specifies that register 0 to 15 contains an unsigned long integer value

Pre-defined Constants

PI constant value for pi (3.1515926)
E constant value for e (2.7182818)

Math Operators

+ Plus
- Minus
* Multiply
/ Divide

Math Functions
SQRT, LOG, LOG10, EXP, EXP10, SIN, COS, TAN, FLOOR, CEIL, ROUND,
NEGATE, ABS, INV, DEGREES, RADIANS, FLOAT, FIX, COMPARE, STATUS, POWER,
ROOT, MIN, MAX, FRAC, ASIN, ACOS, ATAN, ATAN2, LCOMPARE, ULCOMPARE,
LSTATUS, LNEGATE, LABS

User-defined Names
Using symbolic names can make expressions much easier to read and understand. Symbol names can be defined
for uM-FPU registers, microcontroller variables, and constants.

uM-FPU Registers
Registers are defined using the EQU operator to assign a new name to a previous register definition.

 Reference Guide for Generating uM-FPU Code

Micromega Corporation 20 Using the uM-FPU V2 IDE

e.g.
Y EQU F1
X EQU F2
Radius EQU F1

Constants
Constants are defined using the CON or EQU operator.
e.g.

Length CON 4.75
or

Length EQU 4.75

The compiler simplifies constant expressions to a single constant value.
e.g.

Pi2 CON PI / 2

Microcontroller Variables
Microcontroller variables are defined using the VAR or EQU operator and one of the following keywords:

BYTE 8-bit signed integer value
UBYTE 8-bit unsigned integer value
WORD 16-bit signed integer value
UWORD 16-bit unsigned integer value
LONG 32-bit signed integer value
ULONG 32-bit unsigned integer value
FLOAT 32-bit floating point value

e.g.
count EQU BYTE
sensorInput EQU UWORD
lastAngle EQU FLOAT

When a microcontroller variables is used in an expression the uM-FPU compiler generates the necessary code
to transfer the value between the microcontroller and the uM-FPU.
e.g.

degreesC EQU BYTE
degreesF EQU F1
degreesF = (degreesC * 9 / 5) + 32

The generated code will load the byte value from the microcontroller, convert it to floating point, mutiply by 1.8
and the add 32.

Comments
Comments can be added to the end of a line by entering either an apostrophe (') , double slash (//) or
semicolon (;).

User-defined Functions
User-defined functions are specified using the #FUNCTION directive. After a #FUNCTION directive is
encountered, all compiled code is stored in the function specified. The end of a function occurs at the next
#FUNCTION directive, #END directive, or the end of the source file. The #FUNCTION directive can optionally
include a function name that can be used in the remainder of the source file to call the function.
e.g.

#FUNCTION 1 GetDiameter

A function call is specified by using the @ character followed by a constant value between 0 and 63 representing
the number of the function to call.
e.g.

@1 ' call function 1

 Reference Guide for Generating uM-FPU Code

Micromega Corporation 21 Using the uM-FPU V2 IDE

Or, by using the the @ character followed by the name of a previously defined function.
e.g.

@AddValue ' call function AddValue

An example of a function definition and function call is as follows:

Value1 EQU BYTE
Value2 EQU BYTE
X EQU F1
Y EQU F2
Z EQU F3

#FUNCTION 1 Hypotenuse
Z = SQRT(X*X + Y*Y)
#END

X = Value1
Y = Value2
@Hypotenuse

If a function is called from inside another function, execution will not return to the original function (i.e. it is
not a subroutine call). This can still be used to chain functions together to create larger functions (since the
maximum size of a single function is 256 bytes), or for sequence of operations. For example, if you were
updating the position of a robotic arm, you could chain through relative offsets of each joint to get the
cumulative offset.
e.g.

#FUNCTION 1 AddShoulder
X = X + ShoulderX
Y = Y + ShoulderY
Z = Z + ShoulderZ

#FUNCTION 2 AddElbow
X = X + ElbowX
Y = Y + ElbowY
Z = Z + ElbowZ
@AddShoulder

#FUNCTION 3 AddWrist
X = X + WristX
Y = Y + WristY
Z = Z + WristZ
@AddElbow
#END

Entering uM-FPU Assembler Code
The expression compiler takes regular math expressions and compiles them to produce the required uM-FPU
instructions. There are some capabilities of the uM-FPU that are not easily accessible using math expressions,
or in some cases it may be desirable to write a more optimized version of the uM-FPU code. The
#ASM and #ENDASM directives are used to specify uM-FPU instructions (assembler code). The syntax of the
assembler code instructions is shown below. Multiple instructions can be entered on a single line, and an
instruction can span more than one line, but each element of an instruction (e.g. a number or string) must be on
a single line.

e.g.

#ASM SELECTA+1 XOP LOADPI FSET #ENDASM

or
#ASM
 SELECTA+1
 XOP LOADPI
 FSET
#ENDASM

 Reference Guide for Generating uM-FPU Code

Micromega Corporation 22 Using the uM-FPU V2 IDE

Assembler Instructions

SELECTA+r
SELECTB+r
FWRITEA+r yyyy
FWRITEB+r yyyy
FREAD+r
FSET+r
LSET+r
FADD+r
FSUB+r
FMUL+r
FDIV+r
LADD+r
LSUB+r
LMUL+r
LDIV+r

SQRT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
FLOOR
CEIL
ROUND
NEGATE
ABS
INVERSE
DEGREES
RADIANS
SYNC
FLOAT
FIX
FCOMPARE

LOADBYTE bb
LOADUBYTE bb
LOADWORD wwww
LOADUWORD wwww
READSTR
ATOF "ssss"
FTOA "ssss"
ATOL ff
LTOA ff
FSTATUS
NOP

XOP FUNCTION+n
XOP IF_FSTATUSA
XOP IF_FSTATUSB
XOP IF_FCOMPARE
XOP IF_LSTATUSA
XOP IF_LSTATUSB
XOP IF_LCOMPARE
XOP IF_LUCOMPARE
XOP IF_LTST
XOP TABLE
XOP POLY
XOP READBYTE
XOP READWORD
XOP READLONG
XOP READFLOAT
XOP LINCA
XOP LINCB
XOP LDECA
XOP LDECB
XOP LAND
XOP LOR
XOP LXOR
XOP LNOT
XOP LTST
XOP LSHIFT

XOP LWRITEA zzzz
XOP LWRITEB zzzz
XOP LREAD
XOP LUDIV
XOP POWER
XOP ROOT
XOP MIN
XOP MAX
XOP FRACTION
XOP ASIN
XOP ACOS
XOP ATAN
XOP ATAN2
XOP LCOMPARE
XOP LUCOMPARE
XOP LSTATUS
XOP LNEGATE
XOP LABS
XOP LEFT
XOP RIGHT
XOP LOADZERO
XOP LOADONE
XOP LOADE
XOP LOADPI
XOP LONGBYTE bb
XOP LONGUBYTE bb
XOP LONGWORD wwww
XOP LONGUWORD www
XOP IEEEMODE
XOP PICMODE
XOP CHECKSUM
XOP BREAK
XOP TRACEOFF
XOP TRACEON
XOP TRACESTR "ssss"
XOP VERSION

r register number (0-15)
n function number (0-63)
bb 8-bit value
wwww 16-bit value
yyyy floating point value
zzzz long integer value
ssss ASCII string

Note: Extended opcode instructions are required to have an XOP before the opcode.

Assembler Directives
#BYTE bb 8-bit byte value
#WORD wwww 16-bit word value
#LONG zzzz long integer value
#FLOAT yyyy floating point value

Wait Code
The uM-FPU has a 32 byte instruction buffer. If a sequence of instructions in a calculation exceeds 32 the
buffer could overflow, so the program must wait for the buffer to empty at least every 32 bytes. The code
generated by the IDE accounts for this, and will insert a wait sequence as required.

 Reference Guide for Generating uM-FPU Code

Micromega Corporation 23 Using the uM-FPU V2 IDE

File Menu

The New… menu item creates a new source file and sets the name to untitled. If a previous source file is open
and has been changed since the last time it was saved, the user will first be prompted to save the previous source
file.

The Open… menu item opens an existing source file. A file open dialog will be displayed. If a previous source
file is open and has been changed since the last time it was saved, the user will first be prompted to save the
previous source file.

The Save menu item saved the source file. If the source file has not been previously saved, a file save dialog
will be displayed.

The Save As… menu item displays a file save dialog.

The Exit menu item causes the uM-FPU IDE to quit. If a source file is open and has been changed since the last
time it was saved, the user will first be prompted to save the source file.

 Reference Guide for Debugging

Micromega Corporation 24 Using the uM-FPU V2 IDE

Reference Guide for Debugging
Utilizing the built-in uM-FPU debugger, the IDE provides a high-level interface for debugging programs that
use the uM-FPU floating point coprocessor. It supports the ability to trace uM-FPU instructions, set
breakpoints, single-step through execution of uM-FPU instructions, and display the value of uM-FPU registers.
The IDE includes a disassembler so that instruction traces are displayed in easy-to-read assembler format.

Connecting the Debugger
To use the debugger, the uM-FPU IDE requires a 57,600 baud serial connection to the uM-FPU configured as 8
data bits, no parity, and 1 stop bit. The connection is shown below.

For more information on ways to make the serial connection, see Application Note 9 – Adding a Serial
Connection to the uM-FPU V2.

An example of the Debug Window is shown below:

 Reference Guide for Debugging

Micromega Corporation 25 Using the uM-FPU V2 IDE

The scrolling window on the left displays trace messages, and the panel on the right displays the contents of the
uM-FPU registers. The Go/Stop/Stop/Trace buttons at the top left control the breakpoint and trace features,
and the connection status is displayed at the lower left of the window. Use the Select Port… menu item in the
Debug menu if the port needs to be changed

Trace Buffer
The scrolling window on the left of the debug window displays the trace buffer. When a Reset occurs a message
is displayed showing the date and time of the Reset.
e.g.

--
RESET: 2004-08-07 13:19:31
--

Tracing is turned off at Reset, unless the Trace on Reset parameter has been set. Tracing can be controlled by

the program using the TRACEON and TRACEOFF instructions, or by the user with the button. If tracing is
enabled, all uM-FPU instructions are displayed as they are executed. The opcode and data bytes are displayed
on the left, and the uM-FPU instructions are displayed on the right in assembler format.
e.g.

TRACE: ON
 04 SELECTA+4
 FEF3 XOP, LOADPI
 50 FSET
 81 FMUL+1
 81 FMUL+1
 FA00 FTOA 0
 F834382E3639 READSTR: "48.69478"
 34373800
 …

The button toggles the trace mode on and off.

Clicking the button will clear the contents of the trace buffer.

Breakpoints

Breakpoints can be inserted into a program using the BREAK instruction, or initiated by the user with the
button. Breakpoints occur after the next uM-FPU instruction finishes executing (except for SELECTA or
SELECTB). When a breakpoint occurs, the last uM-FPU instruction executed before the breakpoint is
displayed, followed by the break message.
e.g.

 04 SELECTA+4
 FEF3 XOP, LOADPI
BREAK

The buttons are enabled or disabled depending on the current state of execution. The Go
button is used to continue execution, and is enabled at Reset or after a breakpoint occurs. The Stop button is
used to stop execution after the next uM-FPU instruction is executed. If the uM-FPU is idle when the Stop
button is pressed, the breakpoint will not occur until the next uM-FPU instruction is executed. If the uM-FPU is
already at a breakpoint, then the Stop button will be disabled. The Step button is used to single step through
instructions. A new breakpoint occurs after each instruction (except for SELECTA or SELECTB).

 Reference Guide for Debugging

Micromega Corporation 26 Using the uM-FPU V2 IDE

The Register Panel
The register panel displays the value of each register and indicates the currently selected A register and B
register. The A and B registers are indicated by an A and B marker in the left margin of the register panel. For
each register, the register number, optional register name, hexadecimal value, and formatted value is displayed.
The formatted value can be displayed as floating point, long integer, or unsigned long integer. Clicking the
small triangle on the right displays a pop-up menu that is used to select the display format or name of the
register to display (if names have been assigned).
e.g.

The current register values are automatically updated after every breakpoint. The button can be
used to manually force an update of the register values. Register values are displayed in red if the value has
changed since the last time the display was updated, or black if the value is unchanged.

Register Names
Register names are automatically set from the register definitions in the source file. There can be multiple
definitions for each register. To select the name to display, click the small triangle on the right and select the
name from the pop-up menu. The register display format will also be set to the format specified in the register
definition.

 Reference Guide for Debugging

Micromega Corporation 27 Using the uM-FPU V2 IDE

Debug Menu

The Select Port… menu item is used to select the serial communications port. The following dialog will be
displayed.

Port Setup Dialog

The Go, Stop, and Step menu items have the same function as the Go, Stop and Step buttons.

The Turn Trace On / Turn Trace Off menu item has the same function as the Trace button.

The Trace on Reset menu item will automatically enable tracing after a Reset.

The Read Registers menu item has the same function as the Read Registers button.

The Read Version menu item will display the version of the uM-FPU in the trace window.

The Read Checksum menu item will display the checksum of the uM-FPU in the trace window.

 Reference Guide for Storing User-Defined Functions

Micromega Corporation 28 Using the uM-FPU V2 IDE

Reference Guide for Storing User-Defined Functions
The Functions window provides support for storing user-defined functions on the uM-FPU chip. Using stored
functions you can reduce memory usage on the microcontroller, simplify the interface and often increase the
speed of operation. The uM-FPU reserves 1024 bytes of flash memory for storing functions and parameters.
Functions are stored as a string of uM-FPU instructions, and up to 64 functions can be defined. Functions are
specified in the source file by using the #FUNCTION directive (details of the #FUNCTION directive are
provided in the section entitled Reference Guide for Generating uM-FPU Code.

Function Window

The scrolling list on the left shows all of the currently defined functions. The Name column displays the name
of the new function if it is defined in the source file. The New column shows the size in bytes of the new
functions defined in the source file. The Stored column displays the size in bytes of the functions currently
stored on the uM-FPU chip. The = column displays Yes if the new and stored functions are the same, or No if
they are different.

The panel located at top center displays the uM-FPU instructions for the new function defined in the source file,
and the panel located at bottom center displays the uM-FPU instructions for the function stored on the uM-FPU
chip. The function to be displayed is selected by clicking on one of the functions in the Function List.

Clicking the button reads all of the functions currently stored on the uM-FPU chip and
updates the function list.

 Reference Guide for Storing User-Defined Functions

Micromega Corporation 29 Using the uM-FPU V2 IDE

Clicking the button programs the uM-FPU Flash memory to store all of the functions
defined in the function list. If a newly defined function is different then the currently stored functions, the action
taken is determined by the Overwrite Stored Functions option.

If the Always option is selected, a new function will always overwrite any previously stored function.

If the Confirm with User option is selected, the user is asked to confirm whether a new function should replace
the previously stored function.

If the Never option is selected, new function are not allowed to replace previously stored functions.

Functions Menu

The Select Port… menu item is used to select the serial communications port. The following dialog will be
displayed.

Port Setup Dialog

The Read Stored Functions menu item has the same function as the Read Stored Functions button.

The Program Functions menu item has the same function as the Program Functions button.

 Reference Guide for Storing User-Defined Functions

Micromega Corporation 30 Using the uM-FPU V2 IDE

The Show Memory Map… menu item displays a memory map showing the usage of the uM-FPU Flash
memory area reserved for user-defined functions. A status line at the top shows the percent of memory used and
the number of bytes available.

Memory Map Dialog

The Clear Functions menu item will clear all of the user-defined functions from the uM-FPU. A dialog will be
displayed requesting confirmation before the functions are cleared from memory.

The Program Functions menu item has the same function as the Program Functions button.

The Set Parameters… menu item is used to set the uM-FPU parameters as described in the next section.

 Reference Guide for Setting uM-FPU Parameters

Micromega Corporation 31 Using the uM-FPU V2 IDE

Reference Guide for Setting uM-FPU Parameters
The Set Parameters… menu item is used to set the uM-FPU parameters.

Set Parameters Dialog

Break on Reset
If this option is selected, a breakpoint will occur on the first instruction following a Reset.

Trace on Reset
If this option is selected, debug tracing is turned on at Reset.

use PIC Format (IEEE 754 is default)
If this option is selected, the PIC format will be used for reading and writing floating point values. Internally,
the uM-FPU uses floating point values that conform to the IEEE 754 32-bit floating point standard. This is also
the default format for reading and writing floating point values in uM-FPU instructions. The alternate PIC
format is often used by PICmicro compilers. If this option is selected, floating point values are automatically
translated between the PIC format and the IEEE 754 format whenever values are read from the uM-FPU or
written to the uM-FPU, and the microcontroller program can use the PIC format. The IEEEMODE and
PICMODE instructions can be used to dynamically change the format. For additional information regarding the
IEEEMODE and PICMODE instructions, see the uM-FPU V2 Instruction Reference.

Note: The IDE code generator currently only generates code for the default IEEE 754 format.
If the PIC format is used you would need to fix the data values in the code generated for
FWRITEA and FWRITEB instructions.

Interface Mode
By default, the CS pin on the uM-FPU selects the SPI or I2C interface. The interface mode parameter can be
used to select SPI or I2C at Reset (ignoring the CS pin), or it can be set to SPI mode with the CS pin acting as a
chip select.

Note: Using SPI mode with the CS pin acting as a chip select is intended for special
applications. All of the SPI support software currently supplied by Micromega assumes that
no chip select is used. If this option is enabled, the user must develop special code to take
advantage of the capability.

 Reference Guide for Setting uM-FPU Parameters

Micromega Corporation 32 Using the uM-FPU V2 IDE

I2C Address
By default, the I2C address used by the uM-FPU is 1100100x (binary), or C8 (hexadecimal). If the default
address conflicts with another I2C device, or if multiple uM-FPU chips are used on the same I2C bus, the
address can be changed to any other valid I2C address. The address is entered as an 8-bit hexadecimal number
(with the lower bit ignored). A value of 00 will select the default C8 address.

Restore Default Settings
The parameters are restored to the following default settings:

No Break on Reset
No Trace on Reset
IEEE 754 mode
CS pin selects I2C or SPI
I2C address is C8

Further Information
The following documents are also available:

uM-FPU V2 Datasheet provides hardware details and specifications
uM-FPU V2 Instruction Reference provides detailed descriptions of each instruction
Application Note 9 – Adding a Serial Connection to the uM-FPU V2

Check the Micromega website at www.micromegacorp.com for up-to-date information.

