Introduction
This code example provides FPU functions for reading a matrix of switches. When a switch is pressed, the corresponding bit in the 32-bit integer value is set. Any configuration of rows and columns to a maximum of 32 switches can be handled. A 3x4 membrane switch is used in this example. A bit pattern is output sequentially to the columns and the row input values are read to determine if a key is pressed.

3x4 Membrane Switch

Connecting to the FPU
FPU Functions

Arduino test file: *test_keypad.ino*
FPU functions: *keypad.fp4*

getkey() long

Calls *waitkey* to get the next key pressed, and then uses the *ltable* and *llookup* functions to map the key code to the following values:

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-9</td>
<td>0 to 9 keys</td>
</tr>
<tr>
<td>10</td>
<td>* key</td>
</tr>
<tr>
<td>11</td>
<td># key</td>
</tr>
</tbody>
</table>

The *ltable* and *llookup* functions can easily be changed to map other keypad layouts. The key code is ignored if multiple keys are pressed simultaneously.

waitkey() long

Calls *readkey* and waits for the first non-zero key code that’s different from the last key code, so that holding down a key will not return multiple values.

readkey() long

Scans the switch array and returns the key code. A bit is set in the return value for each switch that is currently pressed. If no keys are pressed, zero is returned.

uM-FPU64 features shown in Code Example

- parallel input/output to digital pins
- table lookups

<table>
<thead>
<tr>
<th>Compiler Functions and Procedures</th>
<th>uM-FPU64 Instructions</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>digio(WRITE_BITP,..)</code></td>
<td>DIGIO</td>
</tr>
<tr>
<td><code>digio(READ_BITP,..)</code></td>
<td>DIGIO</td>
</tr>
<tr>
<td><code>ltable(..)</code></td>
<td>TABLE</td>
</tr>
<tr>
<td><code>llookup(..)</code></td>
<td>LTABLE</td>
</tr>
</tbody>
</table>

Further Information

See the Micromega website (http://www.micromegacorp.com) for additional information regarding the uM-FPU64 floating point coprocessor, including:

- *uM-FPU64 Datasheet*
- *uM-FPU64 Instruction Set*
- *uM-FPU64 IDE User Manual*
- *uM-FPU64 IDE Compiler Manual*