
Micromega Corporation Revised 2011-07-18

uM-FPU V3.1
Datasheet
32-bit Floating Point Coprocessor

Introduction
The uM-FPU V3.1 chip easily interfaces to virtually any
microcontroller using a SPI™ or I2C™ interface.
Many microcontrollers used in embedded systems lack floating
point support, but a wide range of sensors available today
require additional computations or data transformation to
provide accurate results.

Advanced operations and fast execution allows the uM-FPU
V3.1 chip to outperform comparable software math libraries. It
also provides Flash memory and EEPROM for storing user-
defined functions and data, and 128 32-bit registers for floating
point and integer data.

Software math libraries often use large amounts of memory on
microcontrollers, particularly as more complex library functions
are used. The uM-FPU V3.1 chip offloads this overhead, and
provides a comprehensive set of floating point operations,
including advanced functions such as FFT, matrix operations
and NMEA sentence parsing.

Development support is provided by the uM-FPU V3 IDE
which takes traditional math expressions and automatically
produces uM-FPU code targeted for one of the many
microcontrollers and compilers supported. The IDE also
interacts with the built-in debugger on the uM-FPU V3.1 chip to
assist in debugging and testing the uM-FPU code.

Applications

• sensor data processing

• GPS data input and processing

• robotic control

• data transformations

• embedded systems

Features

• 32-bit IEEE 754 floating point

• 32-bit integer operations

• GPS serial input

• NMEA sentence parsing

• FFT operations

• 12-bit A/D Converters

• Serial input/output

• String handling

• Matrix operations

• SPI™ or I2C™ interface

• 2.7V, 3.3V, 5V supply

• low power modes

• 18-pin DIP, SOIC-18, QFN-44

• RoHS compliant

Pin Descriptions

Micromega Corporation 2 uM-FPU V3.1 Datasheet

Features

32-bit Floating Point and 32-bit Integer
A comprehensive set of 32-bit floating point and 32-bit
integer operations are provided. See the uM-FPU V3.1
Instruction Set document for details.

User-defined Functions
User-defined functions can be stored in Flash and
EEPROM. Flash functions are programmed through the
SERIN/SEROUT pins using the uM-FPU V3 IDE. The
EEPROM functions can be programmed at run-time.
Conditional execution is supported using conditional
branch and jump instructions.

Matrix Operations
A matrix can be defined as any set of sequential registers.
The MOP instruction provides scalar operations, element-
wise operations, matrix multiply, inverse, determinant,
count, sum, average, min, max, copy and set operations.

FFT Instruction
Provides support for Fast Fourier Transforms. Used as a
single instruction for data sets that fit in the available
registers, or as a multi-pass instruction for working with
larger data sets.

Serial Input / Output
When not used for debugging, the SERIN and SEROUT
pins can be used for serial I/O. For example, SERIN can be
used to read data from a GPS, and SEROUT can be used to
drive an LCD.

NMEA Sentence Parsing
The serial input can be set to scan for valid NMEA
sentences with optional checksum. Multiple sentences can
be buffered for further processing.

String Handling
String instructions are provided to insert and append
substrings, search for fields and substrings, convert from
floating point or long integer to a substring, or convert
from a substring to floating point or long integer. For
example, the string instructions could be used to parse a
GPS NMEA sentence, or format multiple numbers in an
output string.

Table Lookup Instructions
Instructions are provided to load 32-bit values from a table
or find the index of a floating point or long integer table
entry that matches a specified condition.

MAC Instructions
Instructions are provided to support multiply and
accumulate and multiply and subtract operations.

A/D Conversion
Two 12-bit A/D channels are provided. The A/D
conversion can be triggered manually, through an
external input, or from a built-in timer. The A/D
values can be read as raw values or automatically
scaled to a floating point value. Data rates of up to
10,000 samples per second are supported.

Timers
Timers can be used to trigger the A/D conversion, or
to track elapsed time. A microsecond and second
timer are provided.

External Input
An external input can be used to trigger an A/D
conversion, or to count external events.

Low Power Modes
When the uM-FPU V3.1 chip is not busy it
automatically enters a power saving mode. It can also
be configured to enter a sleep mode which turns the
device off while preserving register contents. In sleep
mode the uM-FPU V3.1 chip consumes negligible
power.

Internal Oscillator
Operates at full speed from internal oscillator. No
external components required.

Core Features
• Packages: 18-pin DIP, SOIC-18, QFN-44
• Supply voltages: 5V, 3.3V, 2.7V
• Operating temperature: -40°C to +85°C
• RoHS compliant
• I2C compatible interface up to 400 kHz
• SPI compatible interface up to 15 MHz
• internal oscillator
• no external components required
• supports optional external oscillator
• 256 byte instruction buffer
• 128 general purpose 32-bit registers
• 8 temporary 32-bit registers
• 2304 bytes Flash memory for user-defined

functions
• 1024 bytes EEPROM for data storage or

user-defined functions

Pin Descriptions

Micromega Corporation 3 uM-FPU V3.1 Datasheet

Block Diagram

I2C™

Interface

SPI™

Interface

Serial

I/O

12-bit Analog

to Digital

Converter

32-bit Counter

32-bit Timers

Digital Output

Flash Memory

2304 bytes

EEPROM

Memory

256 x 32-bit

String Processing

Matrix Operations

32-bit Long Integers

32-bit Floating Point

NMEA Sentence Input

FFT Operations

Debug

Monitor

AN0

AN1

MCLR

CS

EXTIN

AVDD AVSS VDD VSS

SERIN

SEROUT

SCLK

SIN/SDA

SOUT/SCL

OUT0

OUT1

OSC1

OSC2

Floating Point Coprocessor

Instruction Buffer

256 bytes

Registers

128 x 32-bit

Power

Control

uM-FPU

V3.1

Pin Diagram

PDIP-18, SOIC-18

uM-FPU

V3.1

MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

Pin Descriptions
PDIP-18, SOIC-18

Pin
1
2
3
4
5
6
7
8
9

10
11

12

13
14
15
16
17
18

Name
/MCLR
AN0
AN1
CS
EXTIN
OSC1
OSC2
SEROUT
SERIN
OUT1
SOUT
SCL
SIN
SDA
VSS
VDD
OUT0
SCLK
AVSS
AVDD

Type
Input
Input
Input
Input
Input
Input
Output
Output
Input
Output
Output
Input
Input
In/Out
Power
Power
Output
Input
Power
Power

Description
Master Clear (Reset)
Analog Input 0
Analog Input 1
Chip Select / Interface Select
External Input
Oscillator Crystal (optional)
Oscillator Crystal (optional)
Serial Output, Debug Monitor - Tx
Serial Input, Debug Monitor - Rx
Digital Output 1, Ready/Busy Status
SPI Output, Busy/Ready Status
I2C Clock
SPI Input
I2C Data
Digital Ground
Digital Supply Voltage
Digital Output 0
SPI Clock
Analog Ground
Analog Supply Voltage

Connecting to the uM-FPU V3.1

Micromega Corporation 4 uM-FPU V3.1 Datasheet

Connecting to the uM-FPU V3.1 chip
The uM-FPU V3.1 chip can be interfaced using one of several different types of SPI interface, or an I2C interface.
The different types are as follows:

• 2-wire SPI interface, single device
• 3-wire SPI interface, single device
• SPI bus interface, multiple devices
• I2C interface, multiple devices

By default, the CS pin is used to select between SPI or I2C interfaces. To use the CS pin as a chip select, as required
by the SPI bus interface, a parameter byte stored in Flash must be set. This is described below, in the section called
SPI Bus Interface.

2-wire SPI interface
When the uM-FPU V3.1 chip is connected directly to the microcontroller as a single device, no chip select is
required, and either a 2-wire or 3-wire SPI interface can be used depending on the capabilities of the
microcontroller. The 2-wire SPI connection uses a single bidirectional pin for both data input and data output. When
a 2-wire SPI interface is used, the SOUT and SIN pins should not be connected directly together, they must be
connected through a 1K resistor. The microcontroller data pin is connected to the SIN pin. The CS pin is tied low
to select SPI mode at Reset, and must remain low during operation. The connection diagrams are shown below.

2-wire SPI Connection

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

VDDVDD

DATA

Microcontroller Pins

1K

CLK

Connecting to the uM-FPU V3.1

Micromega Corporation 5 uM-FPU V3.1 Datasheet

3-wire SPI interface
The 3-wire SPI connection uses separate data input and data output pins on the microcontroller. The CS pin is tied
low to select SPI mode at Reset, and must remain low during operation.

3-wire SPI Connection

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

VDDVDD

DATA OUT

Microcontroller Pins

CLK

DATA IN

SPI Bus Interface
In order for the uM-FPU V3.1 chip to be used on a SPI bus with multiple devices, the CS pin must be enabled as a
chip select. This is accomplished by programming mode parameter bits stored in Flash memory on the uM-FPU
V3.1 chip. Bits 1:0 of mode parameter byte 0 must be set to 11 to select SPI bus mode. When this mode is set, the
SPI interface is automatically selected at Reset, and the CS pin is enabled as a standard active low slave select. The
SOUT pin is a tri-state output and is high impedance when the uM-FPU V3.1 chip is not selected. The connection
diagram is shown below:

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

VDDVDD

MOSI

Microcontroller Pins

SCK

MISO

/SS

The clock signal is idle low and data is read on the rising edge of the clock (often referred to as SPI Mode 0).

Connecting to the uM-FPU V3.1

Micromega Corporation 6 uM-FPU V3.1 Datasheet

SPI Reset Operation
The uM-FPU should be reset at the beginning of every program to ensure that the microcontroller and the uM-FPU
are synchronized. The uM-FPU will prepare for a reset after nine consecutive 0xFF bytes are read, but it is
recommended that ten 0xFF bytes be sent by the microcontroller to ensure that at least nine 0xFF bytes are
recognized even if the microcontroller and uM-FPU are out of sync. The reset does not occur until the SIN signal
goes Low. If SIN remains High after sending the ten 0xFF bytes, a 0x00 byte must be sent (or SIN set Low) to
trigger the reset. Note: If SIN does not go Low within 100 milliseconds of receiving nine 0xFF bytes, a reset will be
triggered by default. A delay of 10 milliseconds is recommended after the reset is triggered to ensure that the reset
sequence is complete and the uM-FPU is ready to receive commands. All uM-FPU registers are reset to the special
value NaN (Not a Number), which is equal to hexadecimal 7FFFFFFF.

Reset Timing Diagram

SCLK

SIN

9 - 0xFF bytes

Reset
Delay

SIN Low

SPI Reading and Writing Data
The uM-FPU is configured as a Serial Peripheral Interconnect (SPI) slave device. Data is transmitted and received
with the most significant bit (MSB) first using SPI mode 0, summarized as follows:

SCLK is active High (idle state is Low)
Data latched on leading edge of SCLK
Data changes on trailing edge of SCLK
Data is transmitted most significant bit first

The maximum SCLK frequency is 15 MHz, but there must be minimum data period between bytes. The minimum
data period is measured from the rising edge of the first bit of one date byte to the rising edge of the first bit of the
next data byte. The minimum data period must elapse before the Busy/Ready status is checked.

Read Delay
There is a minimum delay (Read Setup Delay) required from the end of a read instruction opcode until the first data
byte is ready to be read. With many microcontrollers the call overhead for the interface routines is long enough that
no additional delay is required. On faster microcontrollers a suitable delay must be inserted after a read instruction to
ensure that data is valid before the first byte is read.

SPI Busy/Ready Status
The busy/ready status must always be checked to confirm the Ready status prior to any read operation.
The Busy status is asserted as soon as an instruction byte is received. The Ready status is asserted when both the
instruction buffer and trace buffer are empty. If the uM-FPU is Ready the SOUT pin is held Low. If the uM-FPU is
Busy, either executing instructions, or because the debug monitor is active, the SOUT pin is held High. The
minimum data period must have elapsed since the last byte was transmitted before the SOUT status is checked. If
more than 256 bytes of data are sent between read operations, the Ready status must also be checked at least once

Item
Reset - 0xFF bytes
Reset - SIN Low
Reset Delay

Min
9

10

Typical
10

Max

100

Unit
bytes
msec
msec

Connecting to the uM-FPU V3.1

Micromega Corporation 7 uM-FPU V3.1 Datasheet

every 256 bytes to ensure that the instruction buffer does not overflow. The OUT1 pin can also be used to check the
Busy/Ready Status, see the section entitled Using OUT1 as a Ready/Busy Status.

SPI Instruction Timing Diagrams

Single Byte Opcode

Ready

SCLK

SIN

SOUT

Busy Ready

Minimum
Data Period

Multiple Byte Opcode

Ready

SCLK

SIN

SOUT

Busy Ready

Minimum
Data Period

Minimum
Data Period

Opcode followed by return value

Ready

SCLK

SIN

SOUT

Busy Ready

Minimum
Data Period

Read
Setup Delay

Read
Byte Delay

Item
SCLK Output Low
SCLK Output High
SCLK Frequency - single byte
SCLK Frequency - continuous
Minimum Data Period
Read Setup Delay
Read Byte Delay
Falling Edge of CS to Rising Edge of SCLK
Falling Edge of CS to Busy/Ready Check
Rising Edge of CS to Bus Released

Min
30
30

1.6
15
1

120
1

Max

15
5

500

Unit
nsec
nsec
MHz
MHz
usec
usec
usec
nsec
usec
nsec

Connecting to the uM-FPU V3.1

Micromega Corporation 8 uM-FPU V3.1 Datasheet

I2C interface
If the CS pin is a logic high at reset (e.g. tied to VDD), the uM-FPU will be configured as an I2C slave device. Using
an I2C interface allows the uM-FPU to share the I2C bus with other peripheral chips. The connection diagram is
shown below.

I2C Connection

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

VDDVDD

P0 (default) SCL

P1 (default) SDA

4.7K4.7K

VDD

Note: SCL and SDA

must have pull-up

resistors as required

by the I2C bus.

Microcontroller Pins

I2C Slave Address
The slave address is 7 bits long, followed by an 8th bit which specifies whether the master wishes to write to the
slave (0), or read from the slave(1). The default slave address for the uM-FPU is 1100100x (binary).

• expressed as a 7-bit value, the default slave address is 100 (decimal), or 0x64 (hex).
• expressed as a left justified 8-bit value the default slave address is 200 (decimal) or 0xC8 (hex).

The slave address can be changed using the built-in serial debug monitor and stored in nonvolatile flash memory.

I2C Bus Speed
The uM-FPU can handle I2C data speeds up to 400 kHz.

I2C Data Transfers
The following diagrams show the write and read data transfers. A write transfer consists of a slave address, followed
by a register address, followed by 0 to n data bytes. A read transfer is normally preceded by a write transfer to select
the register to read from.

I2C Write Data Transfer

S 1100100 0 A aaaaaaaa dddddddd A PA dddddddd A

Slave
Address

Register
Address Data Data

0 to n data bytesS - Start Condition
A - ACK/NAK
P - Stop Condition

Connecting to the uM-FPU V3.1

Micromega Corporation 9 uM-FPU V3.1 Datasheet

I2C Read Data Transfer

S 1100100 1 A dddddddd A Pdddddddd N

Slave
Address Data Data

1 to n data bytesS - Start Condition
A - ACK
N - NAK
P - Stop Condition

I2C Registers

I2C Reset Operation
The uM-FPU should be reset at the beginning of every program to ensure that the microcontroller and the uM-FPU
are synchronized. The uM-FPU is reset by writing a zero byte to I2C register address 1. A delay of 8 milliseconds is
recommended after the reset operation to ensure that the Reset is complete and the uM-FPU is ready to receive
commands. All uM-FPU registers are reset to the special value NaN (Not a Number), which is equal to hexadecimal
value 0x7FC00000.

I2C Reading and Writing Data
uM-FPU instructions and data are written to I2C register 0. Reading I2C register 0 will return the next data byte, if
data is waiting to be transferred. If no data is waiting to be transferred the Busy/Ready status is returned. A read
operation is normally preceded by a write operation to select the I2C register to read from.

I2C Busy/Ready Status
The Busy/Ready status must always be checked to confirm that the uM-FPU is Ready prior to any read operation.
The Busy status is asserted as soon as an instruction byte is received. The Ready status is asserted when both the
instruction buffer and trace buffer are empty. If the uM-FPU is Ready, a zero byte is returned. If the uM-FPU is
Busy, either executing instructions, or because the debug monitor is active, a 0x80 byte is returned. If more than 256
bytes of data are sent between read operations, the Ready status must also be checked at least once every 256 bytes
to ensure that the instruction buffer does not overflow.

I2C Buffer Space
Reading I2C register 1 will return the number of bytes of free space in the instruction buffer. This can be used by
more advanced interface routines to ensure that the instruction buffer remains fully utilized. It is only used to
determine if there is space to write data to the uM-FPU. The Busy/Ready status must still be used to confirm the
Ready status prior to any read operation.

Read Delay
There is a minimum delay (Read Setup Delay) required from the end of a read instruction opcode until the first data
byte is ready to be read. The I2C protocol has enough overhead that no additional delay is required.

I2C Register Address
0
1

Write
Data
Reset

Read
Data / Status
Buffer Space

Item
I2C transfer speed
Read Delay – normal operation
Read Delay – debug enabled

Min

0
0

Max
400

Unit
kHz
usec
usec

Connecting to the uM-FPU V3.1

Micromega Corporation 1
0

uM-FPU V3.1 Datasheet

Using OUT1 as a Ready/Busy Status
By default, the uM-FPU V3.1 chip outputs the Busy/Ready status on the SOUT pin, when the SOUT pin is not being
used for data input. Some microcontroller applications are not able to access this pin when the Busy/Ready status is
valid. As an alternative, the OUT1 pin can be configured as a Ready/Busy status (note: OUT1 is High for Ready and
Low for Busy). This is accomplished by programming bit 6 of mode parameter byte 0. See the section entitled Mode
- set mode parameters. When OUT1 is set to output the Ready/Busy status, the SOUT pin will no longer output the
Busy/Ready status. The OUT1 pin can also be used as an activity indicator by connected it to an LED with a pull-up
resistor.

Using the SERIN and SEROUT Pins
The SERIN and SEROUT pins provide a serial interface for the built-in Debug Monitor, and can also be used for
general purpose serial I/O when the Debug Monitor is not being used. The Debug Monitor communicates at 57,600
baud, using 8 data bits, no parity, one stop bit, and no flow control. The Debug Monitor is enabled if the SERIN pin
is high when the uM-FPU is Reset. Note: The idle state of an RS-232 connection will assert a high level on the
SERIN pin, so provided the uM-FPU is connected to an active idle RS-232 port when the uM-FPU is reset, the
Debug Monitor will be enabled. The SEROUT,0 instruction can also be used to enable/disable the Debug Monitor.

When the Debug Monitor is not being used, the serial I/O pins can be used for other purposes. The SEROUT,0
instruction is used to set the baud rate for the SERIN and SEROUT pins from 300 to 115,200 baud, using 8 data bits,
no parity, one stop bit, and no flow control. The SERIN instruction supports reading serial data from the SERIN pin,
and the SEROUT instruction supports sending serial data to the SEROUT pin. The uM-FPU V3.1 chip includes
support for NMEA sentence parsing, making it easy to connect to a GPS or other NMEA compliant device. The
serial output can be used to drive an LCD display or other serial device.

MAX232

/MCLR

AN0

AN1

CS

EXTIN

OSC1

OSC2

SEROUT

SERIN

AVDD

AVSS

SCLK

OUT0

VDD

VSS

SIN/SDA

SOUT/SCL

OUT1

uM-FPU V3

1

2

3

4

5

6

7

8

9

18

17

16

15

14

13

12

11

10

5

4

3

2

1

9

8

7

6

DB-9 Female

Debug Monitor

Micromega Corporation 11 uM-FPU V3.1 Datasheet

Debug Monitor

The built-in Debug Monitor provides support for displaying the contents of uM-FPU registers, tracing the execution
of uM-FPU instructions, setting breakpoints for debugging, and programming user functions. Whenever the uM-
FPU V3.1 chip is reset and debug mode is enabled, the following message is sent to the serial output (SEROUT pin):

{RESET}

Commands are specified by typing an uppercase or lowercase character followed by a return key. The command is
not processed (or echoed) until the return key is pressed. Once the return key is pressed, the command prompt and
command are displayed, and the command is executed. If the command is not recognized, a question mark is
displayed. Special commands are prefixed with a dollar sign. These commands are used to program the user
functions and to check the contents of the uM-FPU. They are not generally used when debugging a running
application. The $M and $P will reset the uM-FPU on completion. The commands are listed below:

B Break stop execution after next instruction
E EEPROM display EEPROM memory
F Flash display Flash stored function memory
G Go continue execution
R Register display registers
S String display string, length and selection point
T Trace toggle trace mode on/off
V Version display version information
X Change displays all register that have changed
/ Comment add comment to debug trace
$C Clock select clock source
$M Mode set mode parameters
$P Program program user function memory
$S Checksum display checksum value

Break – stop execution after next instruction
The Break command is used to interrupt operation of the uM-FPU. The break will not occur until after the next
instruction is executed by the uM-FPU. The debug monitor displays the hex value of the last instruction executed
and any additional data. Entering another Break command, or simply pressing the return key, will single step to the
next instruction. Entering the Go command will continue execution. Note: the uM-FPU V3 IDE includes a
disassembler that translates the trace bytes into a readable instruction sequence.

{BREAK}
>
 0103 (i.e. SELECTA,3)
{BREAK}
>
 2001 (i.e. FSET,1)
{BREAK}
>
 3702 (i.e. FDIVI,2)
{BREAK}
>
 2403 (i.e. FMUL,3)
{BREAK}
>

Debug Monitor

Micromega Corporation 1
2

uM-FPU V3.1 Datasheet

EEPROM – display EEPROM memory
The EEPROM command displays the contents of the EEPROM memory in Intel Hex format.

>E
:1000000000000000000000000000000000000000F0
:1000100000000000000000000000000000000000E0
:100020000000000099000000000000000000000037
:1000300000000000000000000000000000000000C0
:100040000102030405060708090A0B0C0000000062
:1000500007360A33057F1680033301800000000055
:100060000000000000000000000000000000000090
:100070000000000000000000000000000000000080
:10008000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF80
:10009000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF70
.
.
.
:1003D000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF2D
:1003E000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF1D
:1003F000FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF0D

Flash – display Flash stored function memory
The Flash command displays the contents of the Flash stored function memory in Intel Hex format.

>$F
:10000000000000000100000E010E000801160006AD
:10001000011C0002011E0006012400050129001731
:10002000014000120152000D015F0016017500171A
:10003000018C001701A3000E00000000000000006A
:1000400000000000000000000000000000000000B0
:1000500000000000000000000000000000000000A0
:100060000000000000000000000000000000000090
:100070000000000000000000000000000000000080
:100080000000000000000000000000000000000070
:100090000000000000000000000000000000000060
:1000A0000000000000000000000000000000000050
:1000B0000000000000000000000000000000000040
:1000C0000000000000000000000000000000000030
:1000D0000000000000000000000000000000000020
:1000E0000000000000000000000000000000000010
:1000F0000000000000000000000000000000000000
:1001000014200124011420022402152A4115142070
:100110000124022103157E047E05330332017E068D
.
.
.
:1008D0000000000000000000000000000000000018
:1008E0000000000000000000000000000000000008
:1008F00000000000000000000000000010C8000020

Go – continue execution
The Go command is used to continue normal execution after a Break command.

>G

Debug Monitor

Micromega Corporation 13 uM-FPU V3.1 Datasheet

Registers – display registers
The Register command displays a header line showing the currently selected register A, register X, the internal
status value, and if selected, matrix A, B and C. The current contents of all uM-FPU registers are then displayed.

>R
{A=R0, X=R57, S=80, MA=R16:3:3, MB=R32:3:3, MC=R48:3:3
R0:41900000 R1:7FFFFFFF R2:7FFFFFFF R3:7FFFFFFF
R4:40E00000 R5:BF800000 R6:40800000 R7:00000000
R8:C0400000 R9:40800000 R10:00000000 R11:41000000
R12:7FFFFFFF R13:7FFFFFFF R14:7FFFFFFF R15:7FFFFFFF
R16:40000000 R17:40800000 R18:40C00000 R19:41000000
R20:41200000 R21:41400000 R22:41600000 R23:41800000
R24:41900000 R25:7FFFFFFF R26:7FFFFFFF R27:7FFFFFFF
R28:7FFFFFFF R29:7FFFFFFF R30:7FFFFFFF R31:7FFFFFFF
R32:40000000 R33:40800000 R34:40C00000 R35:41000000
R36:41200000 R37:41400000 R38:41600000 R39:41800000
R40:41900000 R41:7FFFFFFF R42:7FFFFFFF R43:7FFFFFFF
R44:7FFFFFFF R45:7FFFFFFF R46:7FFFFFFF R47:7FFFFFFF
R48:40000000 R49:40800000 R50:40C00000 R51:41000000
R52:41200000 R53:41400000 R54:41600000 R55:41800000
R56:41900000 R57:7FFFFFFF R58:7FFFFFFF R59:7FFFFFFF
R60:7FFFFFFF R61:7FFFFFFF R62:7FFFFFFF R63:7FFFFFFF
R64:7FFFFFFF R65:7FFFFFFF R66:7FFFFFFF R67:7FFFFFFF
R68:7FFFFFFF R69:7FFFFFFF R70:7FFFFFFF R71:7FFFFFFF
R72:7FFFFFFF R73:7FFFFFFF R74:7FFFFFFF R75:7FFFFFFF
R76:7FFFFFFF R77:7FFFFFFF R78:7FFFFFFF R79:7FFFFFFF
R80:7FFFFFFF R81:7FFFFFFF R82:7FFFFFFF R83:7FFFFFFF
R84:7FFFFFFF R85:7FFFFFFF R86:7FFFFFFF R87:7FFFFFFF
R88:7FFFFFFF R89:7FFFFFFF R90:7FFFFFFF R91:7FFFFFFF
R92:7FFFFFFF R93:7FFFFFFF R94:7FFFFFFF R95:7FFFFFFF
R96:7FFFFFFF R97:7FFFFFFF R98:7FFFFFFF R99:7FFFFFFF
R100:7FFFFFFF R101:7FFFFFFF R102:7FFFFFFF R103:7FFFFFFF
R104:7FFFFFFF R105:7FFFFFFF R106:7FFFFFFF R107:7FFFFFFF
R108:7FFFFFFF R109:7FFFFFFF R110:7FFFFFFF R111:7FFFFFFF
R112:7FFFFFFF R113:7FFFFFFF R114:7FFFFFFF R115:7FFFFFFF
R116:7FFFFFFF R117:7FFFFFFF R118:7FFFFFFF R119:7FFFFFFF
R120:7FFFFFFF R121:7FFFFFFF R122:7FFFFFFF R123:7FFFFFFF
R124:7FFFFFFF R125:7FFFFFFF R126:7FFFFFFF R127:7FFFFFFF
T1:7FFFFFFF T2:7FFFFFFF T3:7FFFFFFF T4:7FFFFFFF
T5:7FFFFFFF T6:7FFFFFFF T7:7FFFFFFF T8:7FFFFFFF}

String – display string, length and selection point
The String command displays the current string buffer and selection point. The string length, selection start point
and selection length are displayed, followed by the string. The following example shows an empty string.

>S
0,0,0

The following example shows the string buffer after the VERSION instruction has been executed.

>S
13,0,13
uM-FPU V3.1.3

Debug Monitor

Micromega Corporation 14 uM-FPU V3.1 Datasheet

Trace – toggle trace mode on/off
The Trace command toggles the trace mode. The current state of the trace mode is displayed. When trace mode is
on, each instruction that is executed by the uM-FPU is displayed. Note: the uM-FPU V3 IDE includes a
disassembler that translates the trace bytes into a readable instruction sequence.

>T
{TRACE ON}
 0101 5E 29 3600 3714 47 0102 2001 360A 53 61 97:00 0101 1F55 F2" 0.00
000" 0101 5E 29 3602 3714 47 0102 2001 360A 53 61 97:03 0101 1F55 F2"
0.30902" 0101 5E 29 3604 3714 47 0102 2001 360A 53 61 97:06 0101 1F55
F2" 0.58779" 0101 5E 29 3606 3714 47 0102 2001 360A 53 61 97:08 0101 1
F55 F2" 0.80902" 0101 5E 29 3608 3714 47 0102 2001 360A 53 61 97:0A 01
01 1F55 F2" 0.95106" 0101 5E 29 360A 3714 47 0102 2001 360A 53 61 97:0
A 0101 1F55 F2" 1.00000" 0101 5E 29 360C 3714 47 0102 2001 360A 53 61
97:0A 0101 1F55 F2" 0.95106" 0101 5E 29 360E 3714 47 0102 2001 360A 53
 61 97:08 0101 1F55 F2" 0.80902" 0101 5E 29 3610 3714 47 0102 2001 360
A 53 61 97:06 0101 1F55 F2" 0.58779"
>T
{TRACE OFF}

Version – display version information
The Version command displays the version string for the uM-FPU chip, the currently selected interface, and the
current clock speed. If the selected interface is I2C the device address is also shown.

>V
uM-FPU V3.1.3, SPI 29.48 MHz

>V
uM-FPU V3.1.3, I2C C8 29.48 MHz

Change – display changed registers
The Change command displays a header line showing the currently selected register A, register X, the internal status
value, and if selected, matrix A, B and C. The current contents of all uM-FPU registers that have changed since the
last Change command (or Reset) are then displayed.

>X
{A=R0, X=R57, S=80, MA=R16:3:3, MB=R32:3:3, MC=R48:3:3
R0:41900000 R4:40E00000 R5:BF800000 R6:40800000
R7:00000000 R8:C0400000 R9:40800000 R10:00000000
R11:41000000 R16:40000000 R17:40800000 R18:40C00000
R19:41000000 R20:41200000 R21:41400000 R22:41600000
R23:41800000 R24:41900000 R32:40000000 R33:40800000
R34:40C00000 R35:41000000 R36:41200000 R37:41400000
R38:41600000 R39:41800000 R40:41900000 R48:40000000
R49:40800000 R50:40C00000 R51:41000000 R52:41200000
R53:41400000 R54:41600000 R55:41800000 R56:41900000}

>X
{A=R0, X=R57, S=80, MA=R16:3:3, MB=R32:3:3, MC=R48:3:3}

Comment – add comment to debug trace
The comment command is used to insert short comment strings (up to six characters) in the debug session. This can
be useful to provide some notations to refer to when analyzing debug results.

>/test1

Debug Monitor

Micromega Corporation 15 uM-FPU V3.1 Datasheet

Clock – select clock source
The Clock command allows you to change the clock source. The default clock speed is 29.48 MHz using an internal
oscillator which provides the maximum execution speed. The clock speed would only need to be changed for special
circumstances such as low-power applications (e.g. 14.74 MHz for 3.3V operating voltage - see Absolute Ratings).
The clock source is stored in Flash memory as part of the device configuration bits. The clock selection indicates the
clock source to use at power-up. If the selected clock source can’t be validated at power-up, the uM-FPU V3.1 chip
will fall back to an internal clock speed of 1.8425 MHz. The available clock speeds and clock sources are selected
by entering one of the following values:

Value Clock Speed Clock Source
20 1.8425 MHz internal oscillator
E1 7.37 MHz internal oscillator
EA 14.74 MHz internal oscillator
E3 29.48 MHz internal oscillator (default clock speed)
E5 10.0 MHz external 10.0 MHz crystal
E6 20.0 MHz external 10.0 MHz crystal
E7 29.4912 MHz external 7.3728 MHz crystal

The following example changes the clock selection from 29.48 MHz to 14.74 MHz.

>$C
E3
:EA

Note: It may be necessary to power the chip off and back on before the new clock source will take effect since some
clock sources use an internal PLL that only resets at power up. You can check the clock speed that the chip is
currently running at by using the Version command.

Checksum – display checksum value
The Checksum command displays a checksum for the uM-FPU V3.1 program code and user-defined functions
stored in Flash. This can be used to check that the chip is valid, or that a particular set of user-defined functions is
installed.

>$S:001AB76A

Debug Monitor

Micromega Corporation 16 uM-FPU V3.1 Datasheet

Mode – set mode parameters
The Mode command is used to set the four interface mode parameter bytes that are stored in Flash memory. The
factory setting of the parameter bytes is all zeros. The parameter bytes are read at reset to determine the mode of
operation. The mode command displays the current parameter values and the user is prompted to enter new values.
(The values are entered as hexadecimal values.) The new values are programmed into Flash memory and the uM-
FPU is Reset.

>$M
 00000000
:00CA0000

Two hexadecimal digits represent each parameter byte. The mode parameter bytes are interpreted as follows:

Byte 0:

B R T I S

7 6 5 4 3 2 1 0Bit

P Mode

Bit 7 Break on Reset (if debug mode is enabled)
Bit 6 use OUT1 pin for Ready/Busy status
Bit 5 Trace on Reset (if debug mode is enabled)
Bit 4 Idle Mode power saving enabled
Bit 3 Sleep Mode power saving enabled
Bit 2 PIC mode enabled (see PICMODE instruction)
Bits 1:0 Mode

00 – CS pin determines interface mode (default)
if CS pin = Low, SPI mode selected
if CS pin = High, I2C mode selected

01 – I2C mode selected
1x – SPI mode selected (CS pin used as chip select)

Byte 1: I2C Address (if zero, the default address (0xC8) is used.
The 7-bit address is entered as a left justified 8-bit value. The last bit is ignored.

Byte 2: Auto-Start Function
Mode parameter byte 2 specifies a user-defined function that can optionally be called when the
chip is Reset. Mode parameter byte 2 is only checked at Reset if the CS pin is Low. If both the CS
pin and SERIN pin are High at Reset, Debug Mode will always be entered. To use auto-start with
the I2C interface, the CS pin must be Low at Reset, and the I2C mode must be selected using mode
01 in mode parameter byte 0.

D F

7 6 5 4 3 2 1 0Bit

Function

Bit 7 Debug mode
0 - use SERIN to select debug mode

SERIN = Low, Disable debug mode
SERIN = High, Enable debug mode

1 - Disable debug mode
Bit 6 Auto-start function call

0 - No function called
1 - Call the function specified by bits 5:0

Bit 5:0 Function number

Byte 3: reserved

Debug Monitor

Micromega Corporation 17 uM-FPU V3.1 Datasheet

Program – program user function memory
The Program command is used to program the user function memory. Once in program mode, the uM-FPU looks for
valid Intel Hex format records. The records must have an address between 0x0000 and 0x08F0, start on a 64-byte
boundary, and have a length of 1 to 64 bytes. The data is not echoed, but an acknowledge character is sent after each
record. The acknowledge characters are as follows:

+ The record was programmed successfully.
F A format error occurred.
A An address error occurred.
C A checksum error occurred.
P A programming error occurred.

The uM-FPU IDE program (or another PC based application program) would normally be used to send the required
data for the program command. (See documentation for the uM-FPU IDE application program.) To exit the program
mode, an escape character
is sent. The program command will reset the uM-FPU on exit.

>$P
{*** PROGRAM MODE ***}
+++

{RESET}

Debug Monitor

Micromega Corporation 18 uM-FPU V3.1 Datasheet

Debug Instructions

There are several instructions that are designed to work in conjunction with the debug monitor. If the debug monitor
is not enabled, these commands are NOPs. The instructions are as follows:

BREAK
When the BREAK instruction is encountered, execution stops, and the debug monitor is entered. Execution will only
resume when a Go command is issued entered with the debug monitor.

TRACEOFF
Turns the debug trace mode off.

TRACEON
Turns the debug trace mode on. All instructions will be traced on the debug terminal until the trace mode is turned
off by a TRACEOFF instruction or is turned off using the debug monitor.

TRACESTR
Displays a trace string to the debug monitor output. This can be useful for keeping track of a debug session. Trace
strings are always output; they are not affected by the trace mode.

TRACEREG
Displays a trace string with the value of the register to the debug monitor output. Trace registers are always output;
they are not affected by the trace mode.

Flash Memory

Micromega Corporation 19 uM-FPU V3.1 Datasheet

Flash Memory
There are 2304 bytes of Flash memory reserved on the uM-FPU for storing user-defined functions and the mode
parameters. Up to 64 user-defined functions can be stored in Flash memory. User-defined functions have the
advantage of conserving space on the microcontroller and greatly reducing the communications overhead between
the microcontroller and the uM-FPU. In addition, certain instructions (e.g. BRA, JMP, TABLE, POLY) are only valid
in user-defined functions. The FCALL instruction is used to call the user-defined functions stored in Flash memory.
The Busy condition remains set while all of the instructions in the called function execute.

Flash memory for user-defined functions is divided into two sections: the header section and the data section. The
header section is located at program address 0x0000 and consists of 64 pairs of 16-bit words (256 bytes) that specify
the offset to the data section and the length of the stored function. The data section consists of 2048 bytes and
contains the user-defined function code. User-defined functions stored in Flash memory are programmed using the
serial debug monitor. The uM-FPU V3 IDE (Integrated Development Environment) provides support for defining
and programming user-defined functions. (Refer to uM-FPU V3 IDE documentation.)

Flash Memory Layout

0000

0100

08FF

00FF

Header

Data

.

.

.

.

.

.

Offset
0

Size
0

Offset
1

Size
1

Offset
2

Size
2

Offset
3

Size
3

Offset
4

Size
4

Offset
60

Size
60

Offset
61

Size
61

Offset
62

Size
62

Offset
63

Size
63

Offset
59

Size
59

Data
0

Data
2

Data
4

Data
1

Data
5

Data
3

Data
6

Data
8

Data
10

Data
7

Data
11

Data
9

Data
12

Data
14

Data
15

Data
13

Data
2032

Data
2034

Data
2036

Data
2033

Data
2037

Data
2035

Data
2038

Data
2040

Data
2042

Data
2039

Data
2043

Data
2041

Mode
0

Mode
2

Mode
3

Mode
1

Data
16

Data
17

Data
2030

Data
2031

Data
2029

Data
18

Flash Memory

Micromega Corporation 20 uM-FPU V3.1 Datasheet

EEPROM Memory
There are 1024 bytes of EEPROM memory reserved on the uM-FPU for storing user-defined functions and data.
The EESAVE, EESAVEA, EELOAD, EELOADA instructions are used to store and retrieve data. The EEWRITE
instruction is used to store user-defined functions at run-time. The ECALL instruction is used to call the user-defined
functions stored in EEPROM memory. The Busy condition remains set while all of the instructions in the called
function execute. When storing a user-defined function in EEPROM, the first byte of an EEPROM slot must contain
the length of the user-defined function, and the last byte must be a RET instruction. This is used as a validity check
for user-defined functions before the code stored in EEPROM is executed. User-defined functions in EEPROM are
restricted to a total length of 256 bytes. Care should be taken to keep track of how much space is used by a user-
defined functions so that it doesn’t overlap any slots used for data storage.

EEPROM Memory Layout

EEPROM slot

0

EEPROM slot

1

EEPROM slot

2

EEPROM slot

3

EEPROM slot

4

EEPROM slot

251

EEPROM slot

252

EEPROM slot

253

EEPROM slot

254

EEPROM slot

255

.

.

.

0100

03FF

Package Specifications

Micromega Corporation 21 uM-FPU V3.1 Datasheet

PDIP-18 Through-Hole Package

Package Specifications

Micromega Corporation 22 uM-FPU V3.1 Datasheet

SOIC-18 Surface Mount Package

Package Specifications

Micromega Corporation 23 uM-FPU V3.1 Datasheet

QFN-44 Surface Mount Package

Absolute Maximum Ratings

Micromega Corporation 24 uM-FPU V3.1 Datasheet

Absolute Maximum Ratings

DC Characteristics

Note 1: See Application Note 43 - Speed and Power Considerations for uM-FPU V3

Further Information
Check the Micromega website at www.micromegacorp.com

Parameter
Storage Temperature
Ambient Temperature with Power Applied
Supply Voltage on VDD relative to VSS
Input Voltage relative to VSS
Maximum Current out of VSS pin
Maximum Current into VDD pin
Maximum Current sourced by any I/O pin
Maximum Current sinked by any I/O pin
Maximum Current sourced by all I/O pins
Maximum Current sinked by all I/O pins
Recommended Impedance of Analog
Voltage Source

Minimum
-65
-40
-0.3
-0.3

Typical
-
-
-
-

Maximum
+150
+85
+5.5

VDD+0.3
300
250
25
25

200
200
2.5

Units
° Celsius
° Celsius

V
V

mA
mA
mA
mA
mA
mA
Ω

Parameter
I/O Pin Input Low Voltage
I/O Pin Input High Voltage
AVDD

AVSS
Operating MIPS at 4.5 to 5.5 VDD
Operating MIPS at 3.0 to 3.6 VDD
Operating MIPS at 2.5 to 3 VDD
Recommended 5V Operating Range
(VDD)
Supply Current

Minimum
VSS

0.8 VDD
greater of
VDD - 0.3

or 2.7
VSS - 0.3

4.75

-

Typical
-
-

-

Note 1

Maximum
0.2 VDD

VDD
lesser of

VDD + 0.3
or 5.5

VSS + 0.3
30
15
7.5

5.25

-

Units
V
V
V

MIPS
MIPS
MIPS

V

mA

http://www.micromegacorp.com
http://www.micromegacorp.com
http://www.micromegacorp.com

Appendix A - Instruction Summary

Micromega Corporation 25 uM-FPU V3.1 Datasheet

Appendix A
uM-FPU V3.1 Instruction Summary
Instruction Opcode Arguments Returns Description
NOP
SELECTA
SELECTX
CLR
CLRA
CLRX
CLR0
COPY
COPYA
COPYX
LOAD
LOADA
LOADX
ALOADX
XSAVE
XSAVEA
COPY0
COPYI
SWAP
SWAPA
LEFT
RIGHT
FWRITE
FWRITEA
FWRITEX
FWRITE0
FREAD
FREADA
FREADX
FREAD0
ATOF
FTOA
FSET
FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR
FPOW
FCMP

FSET0
FADD0

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B
1C
1D
1E
1F
20
21
22
23
24
25
26
27
28

29
2A

nn
nn
nn

mm,nn
nn
nn
nn

nn

nn
bb,nn
nn,mm
nn

nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
nn

aa…00
bb
nn
nn
nn
nn
nn
nn
nn
nn
nn

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

No Operation
Select register A
Select register X
reg[nn] = 0
reg[A] = 0
reg[X] = 0, X = X + 1
reg[0] = 0
reg[nn] = reg[mm]
reg[nn] = reg[A]
reg[nn] = reg[X], X = X + 1
reg[0] = reg[nn]
reg[0] = reg[A]
reg[0] = reg[X], X = X + 1
reg[A] = reg[X], X = X + 1
reg[X] = reg[nn], X = X + 1
reg[X] = reg[A], X = X + 1
reg[nn] = reg[0]
reg[nn] = long(unsigned byte bb)
Swap reg[nn] and reg[mm]
Swap reg[nn] and reg[A]
Left parenthesis
Right parenthesis
Write 32-bit floating point to reg[nn]
Write 32-bit floating point to reg[A]
Write 32-bit floating point to reg[X]
Write 32-bit floating point to reg[0]
Read 32-bit floating point from reg[nn]
Read 32-bit floating point from reg[A]
Read 32-bit floating point from reg[X]
Read 32-bit floating point from reg[0]
Convert ASCII to floating point
Convert floating point to ASCII
reg[A] = reg[nn]
reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[nn] - reg[A]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[A] = reg[nn] / reg[A]
reg[A] = reg[A] ** reg[nn]
Compare reg[A], reg[nn],
Set floating point status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]

Appendix A - Instruction Summary

Micromega Corporation 26 uM-FPU V3.1 Datasheet

FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0
FPOW0
FCMP0

FSETI
FADDI
FSUBI
FSUBRI
FMULI
FDIVI
FDIVRI
FPOWI
FCMPI

FSTATUS
FSTATUSA
FCMP2

FNEG
FABS
FINV
SQRT
ROOT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN
ATAN2
DEGREES
RADIANS
FMOD
FLOOR
CEIL
ROUND
FMIN
FMAX

FCNV
FMAC
FMSC

2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A

3B
3C
3D

3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
50
51
52
53
54
55

56
57
58

bb
bb
bb
bb
bb
bb
bb
bb
bb

nn

nn,mm

nn

nn

nn

nn
nn

bb
nn,mm
nn,mm

reg[A] = reg[A] - reg[0]
reg[A] = reg[0] - reg[A]
reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[A] = reg[0] / reg[A]
reg[A] = reg[A] ** reg[0]
Compare reg[A], reg[0],
Set floating point status
reg[A] = float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = reg[A] - float(bb)
reg[A] = float(bb) - reg[A]
reg[A] = reg[A] * float(bb)
reg[A] = reg[A] / float(bb)
reg[A] = float(bb) / reg[A]
reg[A] = reg[A] ** bb
Compare reg[A], float(bb),
Set floating point status
Set floating point status for reg[nn]
Set floating point status for reg[A]
Compare reg[nn], reg[mm]
Set floating point status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[A] = 1 / reg[A]
reg[A] = sqrt(reg[A])
reg[A] = root(reg[A], reg[nn])
reg[A] = log(reg[A])
reg[A] = log10(reg[A])
reg[A] = exp(reg[A])
reg[A] = exp10(reg[A])
reg[A] = sin(reg[A])
reg[A] = cos(reg[A])
reg[A] = tan(reg[A])
reg[A] = asin(reg[A])
reg[A] = acos(reg[A])
reg[A] = atan(reg[A])
reg[A] = atan2(reg[A], reg[nn])
reg[A] = degrees(reg[A])
reg[A] = radians(reg[A])
reg[A] = reg[A] MOD reg[nn]
reg[A] = floor(reg[A])
reg[A] = ceil(reg[A])
reg[A] = round(reg[A])
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[A] = conversion(bb, reg[A])
reg[A] = reg[A] + (reg[nn] * reg[mm])
reg[A] = reg[A] - (reg[nn] * reg[mm])

Appendix A - Instruction Summary

Micromega Corporation 27 uM-FPU V3.1 Datasheet

LOADBYTE
LOADUBYTE
LOADWORD
LOADUWORD
LOADE
LOADPI
LOADCON
FLOAT
FIX
FIXR
FRAC
FSPLIT

SELECTMA
SELECTMB
SELECTMC
LOADMA
LOADMB
LOADMC
SAVEMA
SAVEMB
SAVEMC
MOP
FFT
WRBLK
RDBLK
LOADIND
SAVEIND
INDA
INDX
FCALL
EECALL
RET

BRA
BRA,cc
JMP
JMP,cc
TABLE
FTABLE
LTABLE
POLY
GOTO
RET,cc

LWRITE
LWRITEA
LWRITEX

LWRITE0

59
5A
5B
5C
5D
5E
5F
60
61
62
63
64

65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
7A
7B
7C
7D
7E
7F
80

81
82
83
84
85
86
87
88
89
8A

90
91
92

93

bb
bb
b1,b2
b1,b2

bb

nn,bb,bb
nn,bb,bb
nn,bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb
bb
tc,t1…tn
tc
nn
nn
nn
nn
fn
fn

bb
cc,bb
b1,b2
cc,b1,b2
tc,t1…tn
cc,tc,t1…tn
cc,tc,t1…tn
tc,t1…tn
nn
cc

nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

b1,b2,b3,b4

t1…tn

reg[0] = float(signed bb)
reg[0] = float(unsigned byte)
reg[0] = float(signed b1*256 + b2)
reg[0] = float(unsigned b1*256 + b2)
reg[0] = 2.7182818
reg[0] = 3.1415927
reg[0] = float constant(bb)
reg[A] = float(reg[A])
reg[A] = fix(reg[A])
reg[A] = fix(round(reg[A]))
reg[A] = fraction(reg[A])
reg[A] = integer(reg[A]),
reg[0] = fraction(reg[A])
Select matrix A
Select matrix B
Select matrix C
reg[0] = Matrix A[bb, bb]
reg[0] = Matrix B[bb, bb]
reg[0] = Matrix C[bb, bb]
Matrix A[bb, bb] = reg[0]
Matrix B[bb, bb] = reg[0]
Matrix C[bb, bb] = reg[0]
Matrix/Vector operation
Fast Fourier Transform
Write multiple 32-bit values
Read multiple 32-bit values
reg[0] = reg[reg[nn]]
reg[reg[nn]] = reg[A]
Select register A using value in reg[nn]
Select register X using value in reg[nn]
Call user-defined function in Flash
Call user-defined function in EEPROM
Return from user-defined function
Unconditional branch
Conditional branch
Unconditional jump
Conditional jump
Table lookup
Floating point reverse table lookup
Long integer reverse table lookup
reg[A] = nth order polynomial
Computed GOTO
Conditional return from user-defined
function
Write 32-bit long integer to reg[nn]
Write 32-bit long integer to reg[A]
Write 32-bit long integer to reg[X],
X = X + 1
Write 32-bit long integer to reg[0]

Appendix A - Instruction Summary

Micromega Corporation 28 uM-FPU V3.1 Datasheet

LREAD
LREADA
LREADX

LREAD0
LREADBYTE
LREADWORD

ATOL
LTOA
LSET
LADD
LSUB
LMUL
LDIV

LCMP

LUDIV

LUCMP

LTST

LSET0
LADD0
LSUB0
LMUL0
LDIV0

LCMP0

LUDIV0

LUCMP0

LTST0

LSETI
LADDI
LSUBI
LMULI
LDIVI

LCMPI

LUDIVI

LUCMPI

94
95
96

97
98
99

9A
9B
9C
9D
9E
9F
A0

A1

A2

A3

A4

A5
A6
A7
A8
A9

AA

AB

AC

AD

AE
AF
B0
B1
B2

B3

B4

B5

nn

aa…00
bb
nn
nn
nn
nn
nn

nn

nn

nn

nn

bb
bb
bb
bb
bb

bb

bb

bb

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4

b1,b2,b3,b4
bb
b1,b2

Read 32-bit long integer from reg[nn]
Read 32-bit long value from reg[A]
Read 32-bit long integer from reg[X],
X = X + 1
Read 32-bit long integer from reg[0]
Read lower 8 bits of reg[A]
Read lower 16 bits reg[A]
Convert ASCII to long integer
Convert long integer to ASCII
reg[A] = reg[nn]
reg[A] = reg[A] + reg[nn]
reg[A] = reg[A] - reg[nn]
reg[A] = reg[A] * reg[nn]
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Signed compare reg[A] and reg[nn],
Set long integer status
reg[A] = reg[A] / reg[nn]
reg[0] = remainder
Unsigned compare reg[A] and reg[nn],
Set long integer status
Test reg[A] AND reg[nn],
Set long integer status
reg[A] = reg[0]
reg[A] = reg[A] + reg[0]
reg[A] = reg[A] - reg[0]
reg[A] = reg[A] * reg[0]
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Signed compare reg[A] and reg[0],
set long integer status
reg[A] = reg[A] / reg[0]
reg[0] = remainder
Unsigned compare reg[A] and reg[0],
Set long integer status
Test reg[A] AND reg[0],
Set long integer status
reg[A] = long(bb)
reg[A] = reg[A] + long(bb)
reg[A] = reg[A] - long(bb)
reg[A] = reg[A] * long(bb)
reg[A] = reg[A] / long(bb)
reg[0] = remainder
Signed compare reg[A] - long(bb),
Set long integer status
reg[A] = reg[A] / unsigned long(bb)
reg[0] = remainder
Unsigned compare reg[A] and long(bb),
Set long integer status

Appendix A - Instruction Summary

Micromega Corporation 29 uM-FPU V3.1 Datasheet

LTSTI

LSTATUS
LSTATUSA
LCMP2

LUCMP2

LNEG
LABS
LINC
LDEC
LNOT
LAND
LOR
LXOR
LSHIFT
LMIN
LMAX
LONGBYTE
LONGUBYTE
LONGWORD
LONGUWORD
SETSTATUS
SEROUT

SERIN
SETOUT
ADCMODE
ADCTRIG
ADCSCALE
ADCLONG
ADCLOAD

ADCWAIT
TIMESET
TIMELONG
TICKLONG
EESAVE
EESAVEA
EELOAD
EELOADA
EEWRITE
EXTSET
EXTLONG
EXTWAIT
STRSET
STRSEL

B6

B7
B8
B9

BA

BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CD
CE

CF
D0
D1
D2
D3
D4
D5

D6
D7
D8
D9
DA
DB
DC
DD
DE
E0
E1
E2
E3
E4

bb

nn

nn,mm

nn,mm

nn
nn

nn
nn
nn
nn
nn
nn
bb
bb
b1,b2
b1,b2
ss
bb
bb,bd
bb,aa…00
bb
bb
bb

ch
ch
ch

nn,ee
ee
nn,ee
ee
ee,bc,b1…bn

aa…00
bb,bb

Test reg[A] AND long(bb),
Set long integer status
Set long integer status for reg[nn]
Set long integer status for reg[A]
Signed long compare reg[nn], reg[mm]
Set long integer status
Unsigned long compare reg[nn], reg[mm]
Set long integer status
reg[A] = -reg[A]
reg[A] = | reg[A] |
reg[nn] = reg[nn] + 1, set status
reg[nn] = reg[nn] - 1, set status
reg[A] = NOT reg[A]
reg[A] = reg[A] AND reg[nn]
reg[A] = reg[A] OR reg[nn]
reg[A] = reg[A] XOR reg[nn]
reg[A] = reg[A] shift reg[nn]
reg[A] = min(reg[A], reg[nn])
reg[A] = max(reg[A], reg[nn])
reg[0] = long(signed byte bb)
reg[0] = long(unsigned byte bb)
reg[0] = long(signed b1*256 + b2)
reg[0] = long(unsigned b1*256 + b2)
Set status byte
Serial output

Serial input
Set OUT1 and OUT2 output pins
Set A/D trigger mode
A/D manual trigger
ADCscale[ch] = reg[0]
reg[0] = ADCvalue[ch]
reg[0] =
float(ADCvalue[ch]) * ADCscale[ch]
wait for next A/D sample
time = reg[0]
reg[0] = time (long integer)
reg[0] = ticks (long integer)
EEPROM[ee] = reg[nn]
EEPROM[ee] = reg[A]
reg[nn] = EEPROM[ee]
reg[A] = EEPROM[ee]
Store bytes starting at EEPROM[ee]
external input count = reg[0]
reg[0] = external input counter
wait for next external input
Copy string to string buffer
Set selection point

Appendix A - Instruction Summary

Micromega Corporation 30 uM-FPU V3.1 Datasheet

Notes: Opcode Instruction opcode in hexadecimal
Arguments Additional data required by instruction
Returns Data returned by instruction
nn register number (0-127)
mm register number (0-127)
fn function number (0-63)
bb 8-bit value
b1,b2 16-bit value (b1 is MSB)
b1,b2,b3,b4 32-bit value (b1 is MSB)
b1…bn string of 8-bit bytes
ss Status byte
bd baud rate and debug mode
cc Condition code
ee EEPROM address slot (0-255)
ch A/D channel number
bc Byte count
tc 32-bit value count
t1…tn String of 32-bit values
aa…00 Zero terminated ASCII string

STRINS
STRCMP
STRFIND
STRFCHR
STRFIELD
STRTOF
STRTOL
READSEL
STRBYTE
STRINC
STRDEC
SYNC
READSTATUS
READSTR
VERSION
IEEEMODE
PICMODE
CHECKSUM
BREAK
TRACEOFF
TRACEON
TRACESTR
TRACEREG
READVAR
RESET

E5
E6
E7
E8
E9
EA
EB
EC
ED
EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FF

aa…00
aa…00
aa…00
aa…00
bb

bb

aa…00
nn
bb

aa…00

5C
ss
aa…00

Insert string at selection point
Compare string with string selection
Find string
Set field separators
Find field
Convert string selection to floating point
Convert string selection to long integer
Read string selection
Insert byte at selection point
Increment string selection point
Decrement string selection point
Get synchronization byte
Read status byte
Read string from string buffer
Copy version string to string buffer
Set IEEE mode (default)
Set PIC mode
Calculate checksum for uM-FPU code
Debug breakpoint
Turn debug trace off
Turn debug trace on
Send string to debug trace buffer
Send register value to trace buffer
Read internal register value
Reset (9 consecutive FF bytes cause a
reset, otherwise it is a NOP)

Appendix B - Instruction Timing

Micromega Corporation 31 uM-FPU V3.1 Datasheet

Appendix B
uM-FPU V3.1 Instruction Timing
The instruction times shown in the following table are calculated with a clock speed of 29.48 MHz and are measured
from the rising edge of the last bit of the last byte of the instruction (SIN pin) to the Ready state being asserted
(falling edge on SOUT). The instruction times do not include the transfer time for sending the instructions to the
uM-FPU, which depends on the type of interface (e.g. SPI or I2C), and the speed of the interface.

The uM-FPU V3.1 chip contains a 256 byte instruction buffer that can be used to minimize the transfer time.
Instructions can be queued up in the instruction buffer while previous instructions are executing,
allowing the transfer time to overlap the instruction execution time.

User-defined functions can also be stored in Flash memory on the uM-FPU V3.1 chip, which is another option for
eliminating the transfer time.

If debug tracing is enabled, the Ready state is delayed once the trace buffer is full. Trace data is output through the
SEROUT pin at 57,600 baud. On average, each byte of data in an instruction generates approximately three trace
characters, which requires about 521 microseconds to transmit. Once the trace buffer is full, instruction execution is
delayed until space is available. When using a fast interface, trace delays can be a dominant part of the overall
instruction execution time.

Execution Time
Instruction Opcode Arguments Returns (usec) Notes
NOP
SELECTA
SELECTX
CLR
CLRA
CLRX
CLR0
COPY
COPYA
COPYX
LOAD
LOADA
LOADX
ALOADX
XSAVE
XSAVEA
COPY0
COPYI
SWAP
SWAPA
LEFT
RIGHT
FWRITE
FWRITEA
FWRITEX
FWRITE0
FREAD
FREADA

00
01
02
03
04
05
06
07
08
09
0A
0B
0C
0D
0E
0F
10
11
12
13
14
15
16
17
18
19
1A
1B

nn
nn
nn

mm,nn
nn
nn
nn

nn

nn
bb,nn
nn,mm
nn

nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
nn b1,b2,b3,b4

b1,b2,b3,b4

6
4
4
5
7
7
7
5
5
5
5
7
7
7
5
7
5
5
6
6
7
7
5
5
5
5

(note 1)
(note 1)

Appendix B - Instruction Timing

Micromega Corporation 32 uM-FPU V3.1 Datasheet

FREADX
FREAD0
ATOF
FTOA
FSET
FADD
FSUB
FSUBR
FMUL
FDIV
FDIVR
FPOW
FCMP
FSET0
FADD0
FSUB0
FSUBR0
FMUL0
FDIV0
FDIVR0

FPOW0
FCMP0
FSETI
FADDI
FSUBI
FSUBRI
FMULI
FDIVI
FDIVRI
FPOWI
FCMPI
FSTATUS
FSTATUSA
FCMP2
FNEG
FABS
FINV
SQRT
ROOT
LOG
LOG10
EXP
EXP10
SIN
COS
TAN
ASIN
ACOS
ATAN

1C
1D
1E
1F
20
21
22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F

30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C

aa…00
bb
nn
nn
nn
nn
nn
nn
nn
nn
nn

bb
bb
bb
bb
bb
bb
bb
bb
bb
nn

nn,mm

nn

b1,b2,b3,b4
b1,b2,b3,b4

26-90
8-250

5
9-14
10-15
10-15

9
17-18
17-18
5-272

7
5

11-16
12-17
12-17
11

19-20
19-20

8-274
8

10-12
15-18
15-19
15-19
14-15
23-25
23-25
5-47
13
5
6
7
7
7

20-21
23-24
25-286
108-110
112-144
98-110
98-144
90-100
108-110

103
72-101
77-96
62-101

(note 1)
(note 1)
(note 5)
(note 6)

(note 2)
(note 2)
(note 2)

(note 2)
(note 2)
(note 2)

(note 2)
(note 2)
(note 2)

(note 2)
(note 2)
(note 2)

(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)

(note 2)
(note 2)

(note 2)
(note 2)
(note 4)
(note 4)
(note 2)
(note 2)
(note 2)
(note 10)
(note 10)
(note 10)

Appendix B - Instruction Timing

Micromega Corporation 33 uM-FPU V3.1 Datasheet

ATAN2
DEGREES
RADIANS
FMOD
FLOOR
CEIL
ROUND
FMIN
FMAX

FCNV
FMAC
FMSC
LOADBYTE
LOADUBYTE
LOADWORD
LOADUWORD
LOADE
LOADPI
LOADCON

FLOAT
FIX
FIXR
FRAC
FSPLIT
SELECTMA
SELECTMB
SELECTMC
LOADMA
LOADMB
LOADMC
SAVEMA
SAVEMB
SAVEMC
MOP
FFT
WRBLK
RDBLK
LOADIND
SAVEIND
INDA
INDX
FCALL
EECALL
RET
BRA
BRA,cc
JMP
JMP,cc

4D
4E
4F
50
51
52
53
54
55

56
57
58
59
5A
5B
5C
5D
5E
5F

60
61
62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71
7A
7B
7C
7D
7E
7F
80
81
82
83
84

nn

nn

nn
nn

bb
nn,mm
nn,mm
bb
bb
b1,b2
b1,b2

bb

nn,bb,bb
nn,bb,bb
nn,bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb,bb
bb
bb
tc,t1…tn
tc
nn
nn
nn
nn
fn
fn

bb
cc,bb
b1,b2
cc,b1,b2

t1…tn

114-127
10-11
10-11
7-11
8-10
10-11
17-25
6-7
6-7

9-23
16
16
10
10
10
10
7
7
5

10-12
7-10
18-26
20
21
4
4
4
5
5
5
5
5
5

5
5
5
5
5
13
5
6

2-4
7
5

(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)
(note 2)

(note 3)
(note 2)
(note 2)

(note 17)
(note 15)
(note 16)
(note 16)

(note 7)
(note 7)
(note 8)
(note 8)
(note 8)
(note 8)
(note 8)

(note 10)

Appendix B - Instruction Timing

Micromega Corporation 34 uM-FPU V3.1 Datasheet

TABLE
FTABLE
LTABLE
POLY
GOTO
RET,cc
LWRITE
LWRITEA
LWRITEX
LWRITE0
LREAD
LREADA
LREADX
LREAD0
LREADBYTE
LREADWORD
ATOL
LTOA
LSET
LADD
LSUB
LMUL
LDIV
LCMP
LUDIV
LUCMP
LTST
LSET0
LADD0
LSUB0
LMUL0
LDIV0
LCMP0
LUDIV0
LUCMP0
LTST0
LSETI
LADDI
LSUBI
LMULI
LDIVI
LCMPI
LUDIVI
LUCMPI
LTSTI
LSTATUS
LSTATUSA
LCMP2
LUCMP2

85
86
87
88
89
8A
90
91
92
93
94
95
96
97
98
99
9A
9B
9C
9D
9E
9F
A0
A1
A2
A3
A4
A5
A6
A7
A8
A9
AA
AB
AC
AD
AE
AF
B0
B1
B2
B3
B4
B5
B6
B7
B8
B9
BA

tc,t1…tn
cc,tc,t1…tn
cc,tc,t1…tn
tc,t1…tn
nn
cc
nn,b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
nn

aa…00
bb
nn
nn
nn
nn
nn
nn
nn
nn
nn

bb
bb
bb
bb
bb
bb
bb
bb
bb
nn

nn,mm
nn,mm

b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
b1,b2,b3,b4
bb
b1,b2

11
25
23

7
5
5
5
5
5

10-30
20-165

5
5
5
5
22
5
21
5
5
7
7
7
7
23
6
22
6
6
5
5
5
5
21
5
21
5
4
4
6
5
5

(note 8)
(note 8)
(note 8)
(note 8, 9)
(note 8)
(note 8)

(note 1)
(note 1)
(note 1)
(note 1)
(note 1)
(note 1)

(note 6)

(note 3)
(note 3)
(note 3)
(note 3)

(note 3)

Appendix B - Instruction Timing

Micromega Corporation 35 uM-FPU V3.1 Datasheet

LNEG
LABS
LINC
LDEC
LNOT
LAND
LOR
LXOR
LSHIFT
LMIN
LMAX
LONGBYTE
LONGUBYTE
LONGWORD
LONGUWORD
SETSTATUS
SEROUT

SERIN
SETOUT
ADCMODE
ADCTRIG
ADCSCALE
ADCLONG
ADCLOAD
ADCWAIT
TIMESET
TIMELONG
TICKLONG
EESAVE
EESAVEA
EELOAD
EELOADA
EEWRITE
EXTSET
EXTLONG
EXTWAIT
STRSET
STRSEL

STRINS
STRCMP
STRFIND
STRFCHR
STRFIELD
STRTOF

STRTOL

READSEL
STRBYTE

BB
BC
BD
BE
BF
C0
C1
C2
C3
C4
C5
C6
C7
C8
C9
CD
CE

CF
D0
D1
D2
D3
D4
D5
D6
D7
D8
D9
DA
DB
DC
DD
DE
E0
E1
E2
E3
E4

E5
E6
E7
E8
E9
EA

EB

EC
ED

nn
nn

nn
nn
nn
nn
nn
nn
bb
bb
b1,b2
b1,b2
ss
bb
bb,bd
bb,aa…00
bb
bb
bb

ch
ch
ch

nn,ee
ee
nn,ee
ee
ee,bc,b1…bn

aa…00
bb,bb

aa…00
aa…00
aa…00
aa…00
bb

bb
aa…00

6
6
5
5
7
5
5
5

5-11
4-5
4-5
5
5
5
5
4

5
6-7
9
6
8
17

9
10
10

5590
5590
5
5

1120/byte
9
10

5
6

5
4-10
7
5
10

26-90

10-50

(note 3)
(note 3)

(note 14)

(note 14)

(note 11)

(note 11)

(note 1)

Appendix B - Instruction Timing

Micromega Corporation 36 uM-FPU V3.1 Datasheet

Notes:
1. The minimum Read Setup Delay must occur after all opcodes that return data. See the SPI or I2C

instruction timing diagrams for details.
2. Floating point values 1000.0 and 0.001 used for timing.
3. Long integer values 100 and 100000 used for timing.
4. Floating point values 30.0 and 0.001 used for timing.
5. Strings 1.2, 1.23, 1.234, … 1.234567 used for timing.
6. The timing depends on the register value and format specified.
7. The timing depends on the user defined function specified.
8. Instruction only valid in Flash memory.
9. Approximately (20 + 15 * order of the polynomial) microseconds.
10. Floating point values 0.25 and 0.75 used for timing.
11. Busy state is held indefinitely until condition is met.
12. Busy state is held indefinitely until user continues execution from debugger.
13. After 9 consecutive FF bytes the chip is reset, otherwise it is a NOP.
14. Depends baud rate, number of characters and operation.
15. The FFT instruction can do up to 64 point FFTs on-chip. The calculation times for these are as follows:

2 point: 43 usec
4 point: 175 usec
8 point: 538 usec
16 point: 1462 usec
32 point: 3667 usec
64 point: 8703 usec

If the data is on the microprocessor, then read/write data transfer times must be added. For larger FFTs,
the FFT instruction is a multi-stage calculation.

16. Depends on the transfer speed of the microcontroller.
17. Depends on size of matrix and type of operation.

STRINC
STRDEC
SYNC
READSTATUS
READSTR
VERSION
IEEEMODE
PICMODE
CHECKSUM
BREAK
TRACEOFF
TRACEON
TRACESTR
TRACEREG
READVAR
RESET

EE
EF
F0
F1
F2
F3
F4
F5
F6
F7
F8
F9
FA
FB
FC
FF

aa…00
nn
bb

5C
ss
aa…00

9
5
5

3888

20
22
8
28
5

(note 1)
(note 1)
(note 1)

(note 12)

(note 13)

	Introduction
	Features
	
	
	32-bit Floating Point and 32-bit Integer
	User-defined Functions
	Matrix Operations
	FFT Instruction
	Serial Input / Output
	NMEA Sentence Parsing
	String Handling
	Table Lookup Instructions
	MAC Instructions
	A/D Conversion
	Timers
	External Input
	Low Power Modes
	Internal Oscillator
	Core Features
	Single Byte Opcode
	Multiple Byte Opcode
	Opcode followed by return value
	Break – stop execution after next instruction
	EEPROM – display EEPROM memory
	Flash – display Flash stored function memory
	Go – continue execution
	Registers – display registers
	String – display string, length and selection point
	Trace – toggle trace mode on/off
	Version – display version information
	Change – display changed registers
	Comment – add comment to debug trace
	Clock – select clock source
	Checksum – display checksum value
	Mode – set mode parameters
	Program – program user function memory
	BREAK
	TRACEOFF
	TRACEON
	TRACESTR
	TRACEREG
	Parameter

	Minimum
	Typical
	Maximum
	Units
	Parameter

	Minimum
	Typical
	Maximum
	Units

	Block Diagram

	[__a9be414e.pdf]
	Pin Diagram
	Pin Descriptions

	Connecting to the uM-FPU V3.1 chip
	2-wire SPI interface
	3-wire SPI interface
	SPI Bus Interface
	SPI Reset Operation
	Reset Timing Diagram

	SPI Reading and Writing Data
	Read Delay
	SPI Busy/Ready Status
	SPI Instruction Timing Diagrams
	Unit

	I2C interface
	I2C Slave Address
	I2C Bus Speed
	I2C Data Transfers
	I2C Reset Operation
	I2C Reading and Writing Data
	I2C Busy/Ready Status
	I2C Buffer Space
	Read Delay

	Using OUT1 as a Ready/Busy Status
	Using the SERIN and SEROUT Pins
	Debug Monitor
	Debug Instructions
	Flash Memory
	EEPROM Memory
	PDIP-18 Through-Hole Package
	SOIC-18 Surface Mount Package
	QFN-44 Surface Mount Package
	Absolute Maximum Ratings
	DC Characteristics
	Further Information
	Appendix A
	uM-FPU V3.1 Instruction Summary
	Appendix B
	uM-FPU V3.1 Instruction Timing

